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1 Introduction

How does economy-wide–aggregate–risk affect households’ precautionary savings? It is

well established that households insure against individual–idiosyncratic–risks (e.g., in-

come, or health shocks) by accumulating precautionary savings above and beyond their

needs for intertemporal consumption smoothing.1 Such savings have important implica-

tions. They decisively shape households’ balance sheets, and they contribute to lowering

risk-free interest rates, which are key for most asset prices. Yet, little is known about the

drivers of precautionary savings beyond idiosyncratic risk and their consequences.

This paper fills this gap by evaluating the effects of aggregate risk on households’ pre-

cautionary savings and comparing them with the standard precautionary motive. I build

a general equilibrium model of precautionary savings with heterogeneous households

and incomplete markets. In addition to idiosyncratic risk, I introduce two sources of real

and financial aggregate risk to which the Great Recession and the Covid-19 crisis lent

new urgency: fluctuations in aggregate productivity and in the tightness of households’

borrowing constraints, which limit their ability to smooth consumption. For instance,

credit card limits fell by 25% in 2008 and 20% of borrowers had an account closed, includ-

ing those with an excellent credit score (Federal Reserve Bank of New York, Consumer

Credit Panel). In 2020, the net percentage of banks tightening credit standards on all con-

sumer loans increased from 14% in the first quarter to 72% in the third quarter (Federal

Reserve Board, Senior Loan Officer Opinion Survey on Bank Lending Practices).

I use a new representation of the model to decompose precautionary motives and

quantify their real implications. The model addresses the empirical challenge of identify-

ing the effects of aggregate shocks on households’ savings, which are difficult to disentan-

gle from those of idiosyncratic shocks in the data. To achieve identification, I depart from

existing heterogeneous agent models with a small number of aggregate states (based, e.g.,

on Krusell and Smith (1998)), and perturb the model with respect to continuous aggregate

shocks. This setting is, to the best of my knowledge, the first to provide a dynamic decom-

1See, e.g., Zeldes (1989), Deaton (1991), Huggett (1993), Aiyagari (1994), Bertaut and Haliassos (1997),
Carroll and Samwick (1997), Gourinchas and Parker (2002), Parker and Preston (2005), De Nardi, French,
and Jones (2010).

1



position of precautionary motives over the business cycle, thanks to tractable nonlinear

impulse response functions to aggregate shocks.

I obtain three new findings, which highlight the importance of aggregate precaution-

ary motives for households’ balance sheets and the macroeconomy. First, aggregate risk

significantly contributes to precautionary savings, which nuances received wisdom about

the low cost of business cycles (e.g., Lucas (1987)). The contribution of borrowing con-

straint fluctuations to higher savings and a lower risk-free rate is especially large. It

represents 60% of the impact of idiosyncratic income risk in terms of average income

and it dwarfs the impact of aggregate productivity risk, which is close to zero. Second,

aggregate precautionary motives are more important for “middle-class” households, in

contrast with the focus of economists on the top and bottom of the wealth distribution.

Such households are too rich to have enough public insurance from social safety nets,

but too poor to have enough private insurance from their own liquid assets. Third, ag-

gregate precautionary motives imply that shocks can have permanent effects even when

they are themselves temporary. The resulting low-debt environment is key to help widely

used heterogeneous household models explain periods of “creditless recovery” such as

the post-Great Recession era.

The model is populated by infinitely-lived, risk-averse households with heteroge-

neous income and wealth. Every period, households consume and elastically supply

labor to competitive firms. They save in risk-free bonds or borrow subject to a stochastic

borrowing constraint, which depends on individual income and an aggregate component

that is common across households and can be interpreted as capturing credit supply. The

government raises progressive taxes and issues debt to finance progressive transfers and

existing debt. The real risk-free rate and the wage endogenously clear the markets for

savings and labor. Households face countercyclical idiosyncratic income risk and con-

tinuous aggregate shocks to productivity and their borrowing constraints, from which

models with fixed or deterministic constraints typically abstract.

Three ingredients are key for evaluating precautionary motives. First, markets are in-

complete, which generates heterogeneity across households and allows to separate the

effects of idiosyncratic and aggregate shocks. Second, the model incorporates the general
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equilibrium feedback from households’ savings to the risk-free rate, which is itself a key

determinant of savings. Abstracting from this feedback would lead to overstating pre-

cautionary savings: aggregate risk increases savings, but less than with a fixed rate, since

higher savings lower the equilibrium rate, which in turns makes saving less attractive.

Third, households can also adjust their labor supply and receive government transfers,

which are imperfect substitutes to savings; without these margins, the role of savings

would also be overstated.

I calibrate the model using indirect inference to match the level and cross-section of

liquid savings and unsecured debt that U.S. households use to smooth consumption, and

the dynamics of the risk-free rate in the post-Great Recession period. My findings rely

on a dynamic decomposition of precautionary motives, which is based on the economy’s

departure from certainty equivalence with respect to the various sources of aggregate

risk. I solve for first- and second-order perturbations with respect to aggregate shocks.

For each shock, the difference between second- and first-order terms captures the effect of

volatility at each point in time. This leads to different amounts of savings for each source

of risk, which would be difficult to identify in the data or in a standard model simulation.2

This setting leads to three contributions. First, I use the model to quantify the various

precautionary motives, an open question for empirical analyses identifying one source of

risk at a time. The idiosyncratic motive due to income risk arises because of the prudence

property of utility, and because the combination of income shocks and static borrowing

constraints limits consumption smoothing. It has the largest impact on average, and in-

creases savings by 88 percentage points from 31% to 119% of average income compared

to a riskless economy where they are only determined by intertemporal substitution. The

aggregate financial motive due to stochastic borrowing constraints further increases savings

by 54 pp from 119% to 173% of average income, which represents about 60% of the effect

of idiosyncratic risk. This sizable impact cannot be ignored when analyzing households’

balance sheets. Importantly, the assumptions of an endogenous risk-free rate, flexible la-

2For instance, a candidate option may be to simulate the model by alternatively turning on the various
sources of risk to isolate their effects. However, this approach would capture the effects of both the level
and the volatility of the shocks. Therefore, it would not separately identify precautionary motives, which
arise because of the volatility of the shocks that is anticipated by households, including when the level
effect of the shocks itself is small.
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bor supply, and government transfers guarantee that households have alternative ways

of smoothing consumption, and therefore that these estimates are a lower bound on pre-

cautionary savings. Interestingly, the aggregate real motive due to productivity shocks has

almost zero impact on precautionary savings. While these results are consistent with low

costs of business cycles alone for households, they highlight their large costs when as-

sociated with credit cycles. Finally, two caveats apply. First, this decomposition relies

on the differentiability of equilibrium conditions. Keeping it tractable requires abstract-

ing from frictional portfolio choices with stocks or housing, which are likely to amplify

the effect of risk because of adjustment costs and, hence, precautionary savings. Second,

this decomposition assumes some bounded rationality by abstracting from higher than

second-order effects of aggregate shocks.3

Second, I analyze the heterogeneous effects of borrowing constraint fluctuations in

the cross-section of households using nonlinear policy functions. When borrowing con-

straints contract, households’ ability to smooth consumption deteriorates because of two

effects. In the first order, a lower level of borrowing constraints forces constrained bor-

rowers to deleverage, and those close to the constraint to increase savings to avoid be-

coming constrained because of future income shocks. In the second order, the volatil-

ity of borrowing constraints themselves makes them more likely to bind, which further

increases savings and is absent from models without aggregate precautionary motives.

These effects are larger for “middle-class” households with moderate amounts of debt.

They do not have enough savings to ignore the risk of becoming unable to borrow, but

their income is too high to benefit from government transfers.

Third, I highlight the real effects of aggregate precautionary motives. Using a variance

decomposition, I find that aggregate shocks to borrowing constraints explain almost 60%

of the volatility of consumption. The model uncovers a new recessionary effect of borrow-

ing constraints that is driven by the differential labor supply responses of households, for

which I find empirical support. The lower risk-free rate creates an intertemporal substi-

tution motive that tends to decrease hours worked by unconstrained households that are

3Estimating these effects would require households to have unrealistically high computing power. Ab-
stracting from them is plausible given how households make forecasts in practice (e.g., Das, Kuhnen, and
Nagel (2019)). Using market clearing errors, I show that this assumption is innocuous (Appendix Table A1).
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more productive. Even if constrained households work more to pay back their debt, the

net effect is a decrease in consumption because they are less productive.

My findings have important empirical implications. Aggregate precautionary motives

are key to help widely used heterogeneous household models explain the post-Great Re-

cession data. The period since 2009 is characterized by the coincidence of low household

debt and interest rates and, at the same time, a quick consumption recovery. These central

facts are a puzzle for models with fixed borrowing constraints, in which higher future

consumption should increase current debt and the risk-free rate through intertemporal

substitution. Using a particle filter in the model with stochastic borrowing constraints,

I estimate the sequences of aggregate shocks to productivity and borrowing constraints

that explain the observed paths for consumption and the risk-free rate. I validate the cal-

ibration by showing that these estimates align with measures of borrowing constraints

in the data, without being subject to survey error. This is the first paper to perform this

challenging exercise in a general equilibrium model with heterogeneous households, in-

complete markets, and aggregate risk, which has broad applications for future work in

household finance and asset pricing.

These dynamic estimates uncover two patterns, which refine popular narratives of

credit conditions that focus on the impact of shocks but abstract from their duration.

First, a persistent tightening of borrowing constraints of 18% below their average level

throughout the period can explain the decrease in household debt. Second, its effect is

exacerbated by a V-shaped recession in aggregate productivity of 2%. These estimates are

consistent with the onset and magnitude of the 25% decrease in credit card limits in the

data (Federal Reserve Bank of New York, Consumer Credit Panel) and the increase in the

share of lenders who report tightening lending standards (Federal Reserve Board, Senior

Loan Officer Opinion Survey of Bank Lending Practices). While such survey measures

can be hard to interpret, the model estimates the pass-through of lending standards to ac-

tual borrowing constraints. Interestingly, it indicates that the credit tightening was both

slightly weaker and more persistent than surveys suggest. Such estimates can be a use-

ful tool for policymakers to understand the credit landscape faced by borrowers as they

potentially call for different responses.
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Related literature. This work contributes to a longstanding literature that focuses on

households’ idiosyncratic risk but abstracts from aggregate risk as a driver of precaution-

ary savings. The model accounts for shocks to households’ borrowing constraints that are

large and frequent, both at the individual and aggregate levels. Not only were constraints

massively tightened after the Great Recession. They also vary in long time series, includ-

ing the recent Covid-19 recession, and with monetary and macro-prudential policy. For

instance, credit card limits have changed on average for more than a third of accounts ev-

ery quarter since 1999, decreased by 36% conditional on changing, and 7% of households

have completely lost credit access (Federal Reserve Bank of New York, Consumer Credit

Panel).4 Yet, little is known so far about how households respond to this risk.

This is the first paper that decomposes idiosyncratic and aggregate precautionary sav-

ings motives in a general equilibrium model with heterogeneous households and incom-

plete markets. Bertaut and Haliassos (1997) study precautionary savings against idiosyn-

cratic risk in income, return, and mortality, and Haliassos and Hassapis (2002) discuss

their interactions with borrowing constraints. My estimates for the financial precaution-

ary motive are consistent with Guiso, Jappelli, and Terlizzese (1996), in which expecta-

tions of future borrowing constraints increase households’ savings.

Ludvigson (1999) and Bertaut, Haliassos, and Reiter (2009) analyze models with stochas-

tic borrowing constraints but without aggregate risk and with exogenous interest rates.

While they focus on consumption and the credit card puzzle, I analyze precautionary

savings in a general equilibrium model with substitutable forms of private and public

insurance. As in the data, flexible labor supply and social insurance programs lower sav-

ings (Hubbard, Skinner, and Zeldes (1995)). As in the models of Huggett (1993), Aiyagari

(1994), and Heaton and Lucas (1996), endogenizing the interest rate is critical as it is a

key determinant of savings. While previous work has shown that changes in the level of

borrowing constraints affect consumption, housing, and employment (Favilukis, Ludvig-

son, and Van Nieuwerburgh (2017), Guerrieri and Lorenzoni (2017), Jones, Midrigan, and

4See also Appendix Figure A4, which provides further evidence of business cycle changes in lending
standards for consumer loans. On changes in borrowing constraints, see, e.g., Ludvigson (1999), Gross
and Souleles (2002), Mian, Rao, and Sufi (2013), Fulford (2015), Mian, Sufi, and Verner (2017), Baker (2018),
Agarwal, Chomsisengphet, Mahoney, and Stroebel (2018), Cherry, Jiang, Matvos, Piskorski, and Seru (2022),
and Acharya, Bergant, Crosignani, Eisfert, and McCann (2022).
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Philippon (2022)), my result highlight that their volatility is key for precautionary savings.

Finally, the new model representation in this paper allows to structurally estimate the

time series of aggregate shocks that drive equilibrium quantities and prices by applying a

particle filter in a model with heterogeneous households, incomplete markets, and aggre-

gate risk. This approach can help better take the dynamic implications of these models

to the data. It is related to recent work in macroeconomics, which has analyzed the first-

order effect of aggregate shocks but abstracted from the second-order effect of risk, which

is key in household finance applications.5

Outline. The rest of the paper is organized as follows. Section 2 presents the decompo-

sition of precautionary motives in the model. Section 3 describes the calibration. Section

4 analyzes the main results on the financial and real effect of aggregate precautionary sav-

ings motives. Section 5 highlights their empirical implications for household credit since

the Great Recession, and Section 6 concludes.

2 Model Decomposition of Precautionary Motives

This section describes a general equilibrium, closed economy model of precautionary

savings with heterogeneous households, incomplete markets, and two sources of aggre-

gate risk: shocks to aggregate productivity and to the tightness of households’ borrowing

constraints. It presents a novel representation of the model, which provides a dynamic

decomposition of the contributions of aggregate risks to precautionary savings over the

business cycle.

2.1 Environment

The economy is populated by a continuum of measure 1 of heterogeneous, risk-averse

households with rational expectations. Markets are incomplete. Time is discrete.

5See, e.g., Reiter (2009) and Ahn, Kaplan, Moll, Winberry, and Wolf (2017).
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Preferences. Households have time- and state-separable preferences, which are addi-

tively separable in consumption and labor. They have a constant relative risk aversion

(CRRA) utility function over a nondurable consumption good ct produced by competi-

tive firms, and increasing and convex utility costs over hours worked nt that are elastically

supplied to firms:

E0 ∑∞
t=0 βt

[
c1−γ

it
1−γ − ψ

n1+η
it

1+η

]
. (1)

Household balance sheets. Households can save in liquid assets and borrow with un-

secured debt by buying and selling one-period bonds bt+1 at the real risk-free rate rt.

Their balance sheets are summarized by their net savings. When borrowing, they face

stochastic borrowing constraints, which consist of an idiosyncratic component φ (θt) that

varies with individual household earnings θt and an aggregate component φt that is com-

mon across households and varies over the business cycle, which can be interpreted as

reflecting credit supply:

bit+1 ≥ −φ (θit) φt. (2)

The stochastic borrowing constraint captures changes in households’ borrowing ca-

pacity over time as a result of both changes in their individual characteristics (income, or

credit score) and in aggregate credit conditions that are common across households (credit

supply, or lending standards). The multiplicative interaction of the individual and ag-

gregate components of borrowing constraints reflects their complementarity in the data.

The borrowing capacity | − φ (θt) φt| of households with a low φ (θt), who face tighter

credit constraints, tends to contract more when aggregate credit conditions φt deterio-

rate. Conversely, households who face loose constraints tend to enjoy larger increases in

their borrowing capacity when aggregate credit conditions improve.

Households face progressive taxes on labor income τt (θ, n) and progressive transfers

T (θ) from the government that are conditional on earnings. Firms’ profits πt are redis-

tributed equally. This assumption provides a lower bound on estimated precautionary

savings, since it relaxes the constraints of poor households who face more risk relatively
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more. Households’ budget constraints imply that their consumption, net savings, and tax

payments cannot exceed their current savings or debt, income from labor earnings and

firms’ profits, and government transfers:

cit +
bit+1
1+rt

+ τt (θit, nit) ≤ wtθitnit + bit + πt + T (θit) . (3)

Finally, to keep the decomposition of precautionary savings tractable while introduc-

ing aggregate risk, I assume that there is a single interest rate rt at which households can

borrow or save. The benefit of this assumption is to also provide a lower bound on es-

timated precautionary motives, since a higher interest rate on borrowing would further

decrease debt and increase savings.

Choices. Households choose sequences for consumption, labor supply, and net savings

to maximize the expected discounted value of the utility flows from consumption net of

the disutility of working, subject to their budget and stochastic borrowing constraints.

Types of risk. Households face idiosyncratic and aggregate risk, which affect their labor

income, their financial income from risk-free savings and risky firms’ profits, and their

ability to borrow.

Countercyclical idiosyncratic income risk. The logarithm of individual productivity θ

follows a persistent AR(1) process with autocorrelation ρθ:

log θit = ρθ log θit−1 + σθ (zt) εθ
it, εθ ∼ N (0, 1). (4)

The volatility of individual productivity σθ is a decreasing function of aggregate pro-

ductivity zt. Idiosyncratic income risk countercyclical, such that individual income volatil-

ity increases in bad times and decreases in good times.

Aggregate productivity risk. The logarithm of aggregate productivity zt captures the

state of the business cycle. It follows a persistent AR(1) process with autocorrelation ρz

and volatility σz:

log zt = ρz log zt−1 + εz
t . (5)
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Aggregate borrowing constraint risk. The logarithm of the aggregate component of bor-

rowing constraint follows a persistent, mean-reverting AR(1) process with mean φ, auto-

correlation ρφ, and volatility σφ. A negative shock εφ < 0 induces a tightening of borrow-

ing constraints that is common to all households, irrespective of their individual income,

while a positive shock εφ ≥ 0 relaxes them:

log φt − log φ = ρφ

(
log φt−1 − log φ

)
+ ε

φ
t (6)

Aggregate shocks to productivity and borrowing constraints follow a bivariate Nor-

mal distribution, which captures the correlation between the business cycle and aggregate

credit conditions in the data:

εφ

εz

 iid∼ N

0,

 σ2
φ σφσzρφz

σφσzρφz σ2
z

 (7)

Firms. A continuum of competitive firms hires efficient units of labor θtnt from house-

holds every period, and combines them using a decreasing returns to scale production

function that is subject to aggregate productivity shocks. Firms choose total employment

in efficiency units Nt to solve a static profit maximization problem:

maxNt πt = ztNα
t − wtNt (8)

In equilibrium, profits and the wage bill are constant shares of output. Therefore,

firms transmits aggregate productivity shocks one to one to households’ profit shares

and wages:

πt = (1− α)Yt = (1− α)zt Nt
α

wtNt = αYt = αzt Nt
α

(9)

To focus on the precautionary savings in risk-free assets that households use to smooth

consumption at business cycle frequency, I assume that firms’ shares are not tradable and

abstract from risky capital that firms tend to accumulate for precautionary reasons over
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longer horizons, which is the subject of a separate literature in corporate finance.6

Government. The government raises progressive taxes on labor earnings and issues

risk-free debt to finance progressive transfers and outstanding debt. Its budget constraint

is the following:

∫
T (θ) dλt (θ, b) + Bt ≤

∫
τt (θ, n (θ, b)) dλt (θ, b) + Bt+1

1+rt
(10)

Progressive taxes are an affine function of labor earnings:

τt (θit, nit) = τ0t + τ1 (θit)wtθitnit. (11)

The slope τ1 of the tax schedule depends on individual productivity, and the intercept

τ0 adjusts such that the government budget constraint holds every period.

2.2 Equilibrium

The model has heterogeneous households, incomplete markets, and idiosyncratic and

aggregate risk. Therefore, the cross-sectional distribution of households over their pro-

ductivity θ and net savings b, λt (θ, b), is an aggregate state variable. The distribution

is time-varying because of aggregate shocks to productivity and borrowing constraints.

Households take the current risk-free rate rt as given but must forecast the next-period

rate rt+1 to make intertemporal savings choices. The model is a closed economy in which

the supply of liquid assets comes from the risk-free bonds issued by the household sector

and the government. For a given supply of liquid assets, forecasting the risk-free rate is

equivalent to forecasting the demand for liquid assets, which depends on the entire fu-

ture cross-sectional distribution. Households must also forecast the current wage wt that

6See, e.g., Duchin, Gilbert, Harford, and Hrdlicka (2017). Although this assumption could be relaxed at
the cost of expanding the state space, it is unclear that it would change my estimates. Households’ precau-
tionary savings typically exclude risky assets, which do not allow to smooth consumption over the business
cycle as much as risk-free savings because their price is uncertain. In a model with capital where house-
holds also use stocks for precautionary savings, aggregate risk may lead to higher capital accumulation.
An increase in borrowing constraint risk would then be expansionary, which would be at odds with the
post-Great Recession data.
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is given by the intersection of firms’ labor demand and households’ labor supply, which

is itself a function of the wage. The rational expectations equilibrium of the economy is a

fixed point where households’ forecasts for aggregate states coincide with their realized

values.

Definition. Given a sequence of aggregate shocks to productivity and borrowing con-

straints
{

zt, φt
}

, a competitive equilibrium is a sequence of time-varying policy functions

for households’ consumption, labor supply, and net savings {ct (θ, b) , nt (θ, b) , bt+1 (θ, b)}

for firms’ labor demand Nt, risk-free rates and wages {rt, wt}, and government taxes {τt},

such that the following conditions hold.

(i) Households optimally choose savings and labor supply:

ct (θ, b)−γ = β(1 + rt)Et

[
ct+1 (θ, b)−γ

]
+ µt (θ, b)

ψnt (θ, b)η = (1− τ1 (θ))wtθct (θ, b)−γ
(12)

µt (θ, b) denotes the multiplier on the borrowing constraint of household (θ, b). The

intertemporal optimality condition states that the marginal cost of additional sav-

ings must equal the sum of the expected discounted gains of these savings when

earning the risk-free rate and the shadow price of relaxing the borrowing constraint.

The intratemporal optimality condition states that the marginal cost of an addition

hour of work must equal the marginal utility associated with the additional earn-

ings net of taxes.

(ii) Firms optimally choose labor demand, so the marginal productivity of an additional

work hours in efficiency units equals the wage:

αztNα−1
t = wt (13)

(iii) The government budget constraint holds:

∫
T (θ) dλt (θ, b) + Bt =

∫
τt (θ, n (θ, b)) dλt (θ, b) + Bt+1

1+rt
(14)
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(iv) The markets for goods, labor, and savings clear:

∫
ct (θ, b) dλt (θ, b) = Yt = ztNα

t∫
θnt (θ, b) dλt (θ, b) = Nt∫
+ bt+1 (θ, b) dλt (θ, b) =

∫
− bt+1 (θ, b) dλt (θ, b) + Bt+1

(15)

First, aggregate consumption must equal output. Consumption is the numeraire

and its price is normalized to 1. Second, the wage adjusts such that total employ-

ment in efficiency units equals firms’ demand for labor. Third, the risk-free rate

adjusts such that the demand for savings,
∫
+ bt+1dλt, equals the total supply of liq-

uid assets, which comes from the risk-free bonds issued by the household sector

and the government,
∫
− bt+1dλt and Bt+1.7

(v) The cross-sectional distribution of households and the aggregate shocks evolve ac-

cording to their respective laws of motion. Denote Θ × B the sigma-algebra asso-

ciated with the Cartesian product of the discrete set of individual productivity and

the compact set of individual net savings, and
(
Θ̃, B̃

)
a subset of that sigma-algebra.

The law of motion for the cross-sectional distribution of households is given by:

λt+1
(
Θ̃, B̃

)
=
∫

Θ×B Qφt,zt

(
(θ, b) ,

(
Θ̃, B̃

))
dλt (θ, b)

where Qzt,φt

(
(θ, b) ,

(
Θ̃, B̃

))
= 1

{
b′t(θ, b) ∈ B̃

}
∑θ′∈Θ̃ Πθ (θ

′|θ)
(16)

The transition function Qzt,φt
depends on individual productivity and net savings,

and on the aggregate components of productivity and borrowing constraints.

Solution. The model is solved numerically using a new representation described in the

next subsection. Given policy functions and the distribution, the wage can be solved for

analytically using labor market clearing:

wt = αztNα−1
t = αzt

(∫
θn (θ, b) dλt (θ, b)

)α−1

(17)

7These two types of bonds are perfect substitutes, which is a standard assumption that allows to close
the model (see, e.g., Guerrieri and Lorenzoni (2017)).
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The wage directly depends on productivity shocks zt, and indirectly on borrowing con-

straint shocks φt through through their effects on the distribution λt.

2.3 Decomposition

The decomposition of precautionary motives is based on a new representation of the

model using projection and perturbation methods. I outline the main steps, which lend

themselves well to economic interpretation. Appendix A describes the solution algorithm

in detail.

Steps. First, variables and functions (policy functions, the cross-sectional distribution)

are approximated using projections to generate a discrete model with a finite number of

parameters. Second, the stationary steady state of the discrete model without aggregate

shocks is computed. Importantly, this solution of the model is exact without aggregate

shocks; it is global and nonlinear with respect to idiosyncratic state variables. Third, the

solution of the discrete model is perturbed with respect to aggregate shocks around the

stationary steady state where they are zero, to generate the final solution for the stochastic

steady state of the model with aggregate shocks.

The measure of precautionary motives relies on comparing two stochastic steady states

of the model, with first-order and then second-order perturbations with respect to aggre-

gate shocks. In the first order, certainty equivalence holds with respect to aggregate risk:

only the level of shocks affects household behavior, but not their volatility. There are only

idiosyncratic precautionary motives, but no aggregate precautionary motives. In the sec-

ond order, variables depend nonlinearly on the lagged values of shocks and states. The

model departs from certainty equivalence as variables depend on the volatility of aggre-

gate shocks. There are both precautionary motives, and the difference with the first-order

solution is a measure of aggregate motives.

Step 1: Projection. Equilibrium conditions (i)-(v) are stacked in a multivariate vector-

valued function F (.) that represents the nonlinear system of equations that define the

equilibrium:

Et

[
F
(

yt, yt+1, xt, xt+1, ε
φ
t+1, εz

t+1

)]
= 0. (18)
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Variables are sorted into non-predetermined and predetermined variables. The vector of

non-predetermined variables y contains projection coefficients for policy functions, which

are approximated using linear splines, prices and aggregate quantities. The vector of pre-

determined variables x contains the histogram weights used to project the cross-sectional

distribution λt, and aggregate shocks to productivity zt and borrowing constraints φt.

Step 2: Stationary steady state. Solving for the stationary steady state of the model

without aggregate shocks amounts to solving the nonlinear system of equations:

F (y, y, x, x, 0, 0) = 0. (19)

Two model ingredients make this more challenging than the standard consumption-

savings problem: flexible labor supply and the endogeneity of the risk-free rate and gov-

ernment taxes. To solve the problem, I use a variant of the policy-time iteration method,

which combines Broyden’s numerical equation solver and automatic differentiation to

compute exact derivatives.

Step 3: Perturbations. This step starts from the global and nonlinear solution for the

stationary steady state of the model without aggregate shocks. Denote η the perturba-

tion parameter that scales the quantity of aggregate risk in the economy. The solution

of the expectation difference equation 18 defines the equilibrium with aggregate risk

Et [F (.)] = 0. Define h(x, η) and g(.x, η) as nonlinear vector-valued functions that re-

late future predetermined variables and non-predetermined variables to current prede-

termined variables. Without loss of generality, the final solution of the model has the

form:

xt+1 = h (xt, η) + η


0

ε
φ
t+1

εz
t+1


yt = g (xt, η) .

(20)

These equations generalize the dynamic representation of representative agent models

as in, e.g., Schmitt-Grohe and Uribe (2008), to a that setting with heterogeneous agents,

incomplete markets, and aggregate risk.
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First-order. Variables are written in deviations from the stationary steady state. The

dynamics of the model with idiosyncratic precautionary motives but no aggregate motives is

given by a first-order perturbation of the system of equations 20 with respect to aggregate

shocks:

x̂t+1 = hx (x, 0) x̂t + η


0

ε
φ
t+1

εz
t+1


ŷt = gx (x, 0) x̂t.

(21)

I solve for the vectors of coefficients hx (x, 0) and gx (x, 0), which linearly relate future pre-

determined and non-predetermined variables to the level of aggregate shocks (and current

predetermined variables), using a version of the gensys algorithm (Sims (2001)) for het-

erogeneous agent models. This step involves computing the Jacobian of the multivariate

vector-valued function F (.).

Second-order. The dynamics of the model with both idiosyncratic and aggregate precau-

tionary motives is given by a second-order perturbation of equations 20 with respect to

aggregate shocks:

x̂t+1 = hx (x, 0) x̂t +
1
2

hxx (x, 0) x̂t
2︸ ︷︷ ︸

nonlinearity

+
1
2

hηη (x, 0) η2︸ ︷︷ ︸
agg. precautionary motive

+η


0

ε
φ
t+1

εz
t+1


ŷt = gx (x, 0) x̂t +

1
2

gxx (x, 0) x̂t
2︸ ︷︷ ︸

nonlinearity

+
1
2

gηη (x, 0) η2︸ ︷︷ ︸
agg. precautionary motive

.

(22)

Solving for the new vectors of coefficients implies computing the Jacobian and the

Hessian of the functionF (.). I solve for the vectors of coefficients hηη (x, 0) and gηη (x, 0),

which relate future predetermined and non-predetermined variables to the volatility of

aggregate shocks. Since perturbation methods for representative agent models cannot be

applied due to the high dimension of the equation system, I apply a series of steps to

reduce its dimension, which build on an extension of the gensys2 algorithm (Kim, Kim,

Schaumburg, and Sims (2008)).
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Interpretation. The difference between the second-order and the first-order perturba-

tions of the model provides two new measures of interest.

Nonlinearity. The coefficient vectors hxx (x, 0) and gxx (x, 0) measure the nonlinear de-

pendence of future predetermined variables and non-predetermined variables on current

predetermined variables. These terms amplify households’ responses to a credit contrac-

tion compared to a linear approximation, as shown by the impulse response functions

below (see Section 4). Therefore, they are crucial to help the model match the dynam-

ics of household debt and consumption in the post-Great Recession data (see Section 5).

They are not an exact measure of nonlinearity as my approach abstracts from higher than

second-order terms. However, I show that the second-order approximation accurately de-

scribes the dynamics of the economy by computing the resulting market clearing errors,

which are close to zero (Appendix Table A1).

Aggregate precautionary motive. The coefficient vectors hηη (x, 0) and gηη (x, 0) measure

aggregate precautionary motives as the departure of the model from certainty equiv-

alence with respect to aggregate shocks. With certainty equivalence, only the level of

shocks to aggregate productivity and borrowing constraints would affect household be-

havior. Without it, the volatility of shocks affect policy functions, the cross-sectional dis-

tribution, and prices because of precautionary motives. Therefore, the stochastic steady

state permanently differs from the stationary steady state. It can be interpreted as the

time series average of a long-run simulation of the model with aggregate shocks.

Aggregate precautionary motives arise because households make optimal decisions

given the stochastic processes governing aggregate shocks. For instance, their anticipa-

tion of future potential changes in borrowing constraints generates a precautionary mo-

tive in the Euler equation, c−γ
t = β(1 + rt)Et

[
c−γ

t+1

]
+ µt. A high multiplier µt on current

borrowing constraints implies higher savings. Iterating the equation forward, the aver-

age and higher-order moments of future multipliers on borrowing constraints {µs}s≥t,

especially their volatility due to aggregate shocks, further increase savings. In contrast,

standard models typically assume that households have perfect foresight over fixed bor-

rowing constraints. Fully unexpected shocks to the constraints tend to lead to more ex-

treme responses than in the data as households suddenly and massively deleverage in
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response to a credit contraction.8

3 Calibration

This section describes how the dynamic decomposition of precautionary motives in the

model of Section 2 is mapped to U.S. post-Great Recession business cycle data. The model

is calibrated to match the level and cross-sectional moments of liquid savings and unse-

cured debt that households use to smooth consumption over the business cycle. Impor-

tantly, the model also matches the dynamics of the risk-free rate and government taxes

and transfers to accurately account for households’ incentives to save.

Table 1 summarizes the calibration, which is split between externally, internally cal-

ibrated parameters, and sources of aggregate risk. Given external parameters, the fit of

the model is measured as the sup norm between the vector of targeted moments and their

empirical counterparts. One period is a quarter and moments are annualized. Average

income is normalized to 1. Table 2 reports the fit of the model.

3.1 External Parameters

Idiosyncratic labor income shocks. The persistence and the volatility of the productiv-

ity process θ are chosen to match the persistence and volatility of wages of 0.92 and 0.24

in Kopecky and Suen (2010). The AR(1) process is discretized as a five state Markov chain

as in Rouwenhorst (1995), which better matches the dynamics of income when the pro-

cess is persistent than the standard method from Tauchen (1986). In steady state, 6.25% of

households are in the lowest productivity group, 25% in the second lowest, 37.5% in the

middle, 25% in the second highest, and 6.25% in the highest group.

Labor income shocks also generate changes in borrowing constraints at the individual

level through the vector [φ(θ)]θ, which reflects changes in ability to borrow in the data

that are due to individual factors (credit score, or employment status).

8See, e.g., Jones, Midrigan, and Philippon (2022), who discuss the model implications of households’
slow deleveraging in the data.
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Table 1: Calibration: Main parameters

Parameter Explanation Value Target/source

External

α Labor share 2/3 Labor share of output = 2/3
τ1 (θ) Tax progressivity by productivity see text Tax distribution by income (CPS)
T (θ) Government transfers by productivity see text Transfer distribution by income (CPS)
φ (θ) Borrowing constraints: idiosyncratic see text Debt distribution by income (SCF)
ρθ Idiosyncratic productivity persistence 0.92 Wage persistence
σθ Idiosyncratic productivity volatility 0.24 Wage volatility

Internal

γ Risk aversion 5 See text
β Discount factor 0.93 Risk-free rate = 1.80% (FRB)
B Liquid savings supply 6 Liquid savings/income = 1.78 (FRB)
η Curvature disutility of work 2 Frisch elasticity = 1/2
ψ Disutility of work 11.5 Income normalization Y = 1

Aggregate risk

ρz Productivity persistence 0.55 TFP persistence
σz Productivity volatility 0.026 TFP volatility
φ Borrowing constraints average 2.6 Unsecured debt/income = 0.18 (FRB)
ρφ Borrowing constraints persistence 0.96 Risk-free rate persistence = 0.65 (FRB)
σφ Borrowing constraint volatility 0.10 Risk-free rate volatility = 1.9% (FRB)
ρφz Productivity and borrowing constraint correlation 0.5 Debt-income correlation = 0.9 (FRB, BEA)

Notes: One model period is a quarter, parameters and targets are annualized. Sources: Current Population Survey (CPS), Survey of
Consumer Finances (SCF), Federal Reserve Board (FRB), Bureau of Economic Analysis (BEA).

Cross-sectional distribution of borrowing constraints. The vector [φ(θ)]θ for the id-

iosyncratic component of borrowing constraints is chosen to match, by construction, the

distribution of unsecured household debt across the five income group in the data for the

bottom 80% of households.9 Unsecured debt is computed in the Survey of Consumer Fi-

nances as total household debt minus the total value of debt secured by primary residence

(including mortgages and HELOC) and the total value of debt for other residential prop-

erties. This leaves other lines of credit, credit card balances, installment loans (including

education and auto loans), and other debt. Normalizing φ(θ1) = 1 in the lowest income

group, the resulting vector of relative borrowing limits is equal to [1, 1.03, 1.06, 1.08, 2.33].

These values capture the increase of individual borrowing limits with income. They repli-

cate the dispersion of household debt by income that is key for households’ response to

borrowing constraint shocks.

9There is no mechanism in the model to generate high wealth inequality at the top (e.g., return hetero-
geneity, “superstar” income levels).
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Cross-sectional distribution of progressive transfers and taxes. The vector of progres-

sive transfers [T(θ)]θ and the vector of income tax slopes [τ1(θ)]θ are similarly chosen

to replicate the distribution of transfers and taxes on working-age households across the

five income groups in the data (Congressional Budget Office (2006), Exhibit 18). Nor-

malizing T (θ1) = 1 in the lowest income group, the resulting vector of relative trans-

fers is T (θ) = [1, 0.43, 0.24, 0.17, 0.13]. Average transfers are decreasing in household

income, and they are steeply decreasing at low income levels. In level, transfers rep-

resent 6.9% of average income. I apply a constant multiplicative factor to the vector

of transfers to match this share in the model. The vector for tax slopes by income is

τ1 (θ) = [0.05, 0.13, 0.17, 0.20, 0.28]. Income taxes are increasing with income, especially at

high income levels.

3.2 Internal Parameters

The following parameters are chosen to match household balance sheets and the dynam-

ics of the risk-free rate.

Risk aversion. The coefficient of relative risk aversion γ is chosen to provide the best

overall fit of the model with the data for a given set of internally calibrated parameters. I

obtain γ = 5, which has conservative implications for savings given that it is lower than

standard values in finance. Higher values imply higher savings and a lower risk-free rate.

For instance, Favilukis, Ludvigson, and Van Nieuwerburgh (2017) study a model where

stochastic borrowing constraints that be either high or low and choose γ = 8.

Liquid savings. The demand for savings arises from households’ intertemporal con-

sumption smoothing and precautionary motives. Households accumulate liquid savings

and borrow with unsecured debt by buying and selling one-period risk-free bonds. The

supply of savings is endogenous and comes from risk-free bonds issued by the house-

hold sector,
∫
− bt+1dλt, and the government, Bt+1 = B, as in standard closed economy
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models.10 The demand for liquid savings consist of the positive part of the distribution of

bonds,
∫
+ bt+1dλt. In the data, liquid savings are defined as the sum of all deposits and

securities held directly by households, which are computed in the Flow of Funds (Federal

Reserve Board, Z.1, table B.100) as the sum of inventory change (line 9), Treasury currency

(16), checkable deposits and currency (19), time and savings deposits (20), money market

fund shares (21), open market paper (24), and Treasury securities (25). In the model, the

net supply of liquid savings B =
∫

bt+1dλt =
∫
+ bt+1dλt −

∫
− bt+1dλt is chosen to match

the value of liquid assets to income,
∫
+ bt+1dλt/Yt, of 1.78. I obtain B = 6, which delivers

a close value of 1.73.

Discount factor. The average discount factor β = 0.93 is chosen to match the average

real risk-free rate. The risk-free rate is measured in the data as the average of annual

Treasury Inflation Indexed 5-year yield of 1.80% between 2000 and 2018 (Federal Reserve

Board, H.15 Selected Interest Rates).

Households have heterogeneous discount factors, which helps the model generate

the same amount of wealth inequality as in the data, as in Krusell and Smith (1998) and

Favilukis, Ludvigson, and Van Nieuwerburgh (2017). The discount factor for households

with the lowest of all five productivity levels, who account for 6.25% of the population,

is set to be 20% than the average β. This value is chosen to generate the same fraction

of borrowing-constrained households in this group as in the data by making them more

impatient to consume. Without this heterogeneity, the transfers to these households in the

data are so large that they would be less constrained than households in higher income

group, which would be counterfactual.

Labor supply. The curvature of the disutility of work hours η = 2 generates a Frisch

elasticity of labor supply of 0.5 that aligns with empirical estimates for micro data (Whalen

and Reichling (2017)). This is a key moment to match as households can also adjust their

labor supply to insure against aggregate risk, which typically leads them to save less.

10See, e.g., Huggett (1993) and Aiyagari (1994). Government debt in excess of households’ savings is held
by investors outside the model. This is a plausible assumption for the U.S. where debt held by the public is
on average 40% of average income. For tractability, all closed economy models of household savings follow
this approach.
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The level of the disutility of work hours ψ = 11.5 is chosen to normalize average

quarterly household income to Y = 1.

3.3 Aggregate Risk

Productivity shocks. The persistence and the volatility of aggregate productivity z are

calibrated externally using historical data on total factor productivity (Fernald (2014)).

They are set to ρz = 0.55 and σz = 0.026.

Countercyclical income risk, i.e., the dependence of the volatility σθ on aggregate pro-

ductivity z, is calibrated by extrapolating estimates from Storesletten, Telmer, and Yaron

(2004). In the data, the standard deviation of individual income increases by 0.09 for a

1.5% change in output from peak to trough. In the model, a negative one standard de-

viation shock to aggregate productivity z lowers steady state output by -0.5%. To match

the data, I assume that such a shock increases the volatility of idiosyncratic income by

0.09/(1.5/0.5)=0.03, which represents 25% of the average volatility.11

Borrowing constraint shocks. The average aggregate component of borrowing con-

straints that is common across households, φ, is chosen to match the ratio of average

unsecured debt to income of 0.18 in the Flow of Funds. It can be interpreted as capturing

average credit supply. Unsecured debt is computed as total household liabilities minus

mortgage debt (table B.100, line 34). The resulting parameter φ = 2.6 delivers a close

value for unsecured debt to income value of 0.23.

To guarantee that my estimates for precautionary motives are consistent with em-

pirical values for the risk-free rate, which is a key determinant of household savings, I

internally calibrate the process for the tightness of borrowing constraints to match the

dynamics of the real risk-free rate in the data. Importantly, in Section 5, I empirically

validate these estimates by showing that they imply borrowing constraints that are con-

11Countercyclical income risk does not affect the deterministic steady state with zero aggregate produc-
tivity shocks, but it slightly amplifies the economy’s response to shocks in both the first- and the second-
order solutions of the model. It affects the first-order solution of the model, despite only changing moments
of higher order, because it increases the dispersion of individual income, hence the probability that house-
holds hit their borrowing constraints and are prevented from smoothing consumption.
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sistent with changes in credit limits and lending standards in the post-Great Recession

period. The persistence ρφ and the volatility σφ of the aggregate component of borrowing

constraints are chosen to match the persistence and the volatility of the real risk-free rate

that are respectively equal to 0.65 and 1.90%, in annual terms. I obtain quarterly values

of ρφ = 0.69 and σφ = 0.10. Using sensitivity analyses, I show that these estimates are

well identified (Appendix Figure A1). Overall, they imply slightly less variation than

some estimates directly based on changes in credit card limits, which can be as large as

income changes (see, e.g., Fulford (2015)). Therefore, my estimates of precautionary mo-

tives should be interpreted as a lower bound.

This modeling approach, as in other work on stochastic borrowing constraints, tractably

captures the fact that borrowing limits on some outstanding loans and on all new vary

over time. A potential concern is that it can overstate the volatility in borrowing if changes

in credit limits do not immediately lead to changes in household debt. However, several

considerations mitigate this concern. First, in practice, credit card lenders are allowed

to change credit limits, which accounted for about a third of consumer credit in 2008.

For instance, credit limits have changed on average for more than a third of accounts

every quarter since 1999, decreased by 36% conditional on changing, and 7% of house-

holds have completely lost credit access (Federal Reserve Bank of New York, Consumer

Credit Panel). While lenders cannot ask for repayment when limits change on outstand-

ing loans, they can apply extra charges after 45 days, which have a similar effect (one

period is a quarter in the model). Second, credit limits on outstanding student and auto

loans are fixed but they can be changed when these loans become delinquent.

Finally, the correlation between borrowing constraints and productivity ρφz is chosen

to match the correlation between outstanding total consumer credit owned and securi-

tized (Federal Reserve Board, G.19 Consumer Credit) and linearly detrended personal

income (Bureau of Economic Analysis), which is about 0.90. I obtain a quarterly value of

ρφz = 0.50, because the model already endogenously generates a positive correlation be-

tween household debt and income, though it is not large enough to quantitatively match

the procyclicality of household debt.
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3.4 Model Fit

Table 2 describe the fit of the model, which matches key empirical moments of house-

holds’ balance sheets. The upper panel reports targeted moments, and the lower panel

reports untargeted moments that capture the tightness of borrowing constraints. The

model replicates well the ratios of aggregate liquid assets to income of 1.78 and unse-

cured debt to income of 0.18. Importantly, it exactly matches the average and the dynam-

ics of the risk-free rate, which is a key determinant of household savings. This guarantees

that precautionary motives in the model are correctly estimates. By construction, the

model also replicates the distribution of unsecured debt for the five productivity groups

in the model, from the lowest to the highest income. Borrowing capacity increases with

households’ income group, though only slightly for the first four groups, before almost

doubling for the highest group. Finally, the model correctly accounts for two alternative

margins that households can use to smooth consumption in addition to savings. First, the

model matches the distribution of government transfers and taxes across the five income

groups. Transfers, hence the insurance value of social safety nets, are strongly decreas-

ing at the bottom of the income distribution, and then decrease almost linearly for higher

income groups. Therefore, they are an important substitute to precautionary savings for

the poorest households. Second, the model matches the micro Frisch elasticity of labor

supply of 0.5, which measures the change in hours worked in response to wage changes

over the business cycle. Households can increase their labor supply instead or in addition

to saving when their borrowing capacity deteriorates.

The model also generates realistic non-targeted moments. Crucially, it matches the

share of 33% of borrowing-constrained households in the data, which is computed as

the fraction of households that report being without savings (The Pew Charitable Trusts

(2015)). This value is also close to the 21% share of hand-to-mouth households, which is

another measure of the tightness of borrowing constraints (Kaplan and Violante (2014)).

The model generates substantial inequality in the distribution of liquid savings across

households, with an average to median ratio of savings equal to 4.90. This ratio cap-

tures respectively the low and high savings at the bottom and at the top of the distribu-
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tion. It is about three quarters of its value of 6.57 in the data. Finally, the model matches

well the distribution of liquid assets to income at the bottom of the distribution, as illus-

trated by the 10th and 25th percentiles that are close to zero. The borrowing constraints

of these households are either binding or close to. The precautionary motive due to bor-

rowing constraint fluctuations is the largest for slightly richer, “middle-class” households

in higher percentiles of the distribution, who save much more in liquid assets relative

to their income. Compared to the data, the median household tends to save more, but

this difference, as well as the difference for the ratio of average to median savings, re-

flects the fact that the model is calibrated for the bottom 80% of households and does not

have a mechanism to generate high wealth inequality at the top of the distribution (return

heterogeneity, “superstar” income levels).

Table 2: Aggregate and distribution moments

Data Model

Targeted

Aggregate liquid savings/income 1.78 1.73
Aggregate unsecured debt/income 0.18 0.23
Unsecured debt distribution by income [1, 1.03, 1.06, 1.08, 2.33] [1, 1.03, 1.06, 1.08, 2.33]
Government transfer distribution by income [1, 0.43, 0.24, 0.17, 0.13] [1, 0.43, 0.24, 0.17, 0.13]
Government taxes distribution by income [0.05, 0.13, 0.17, 0.20, 0.28] [0.05, 0.13, 0.17, 0.20, 0.28]
Frisch elasticity of labor supply 0.5 0.5
Risk-free rate average 1.80% 1.80%
Risk-free rate volatility 1.90% 1.90%
Risk-free rate persistence 0.65 0.65

Non-targeted: borrowing constraint tightness

Share borrowing-constrained households 0.33 0.35
Mean/median savings 6.57 4.90
P10 liquid savings/income 0 0
P25 liquid savings/income 0.01 0
P50 liquid savings/income 0.15 0.30

Notes: Upper panel: targeted moments. Lower panel: non-targeted moments describing the tightness of households’ borrowing
constraints. One period is a quarter, targets are annualized. Sources: FRB, CPS, SCF, Boar, Gorea, and Midrigan (2021), Whalen and
Reichling (2017), The Pew Charitable Trusts (2015).

25



4 The Financial and Real Effects of Aggregate Precaution-

ary Motives

This section presents the main results on the dynamic effects of aggregate risk on precau-

tionary savings in three steps. First, I present average estimates of the impact of fluctu-

ations in households’ borrowing constraints and aggregate productivity. The impact of

changes in borrowing constraints is especially large, contrary to received wisdom about

the low cost of business cycles. Second, I decompose the impact of aggregate risk in the

cross-section of households and highlight the understudied role of “middle class” net

savers. Third, I analyze the real implications of borrowing constraint risk for consump-

tion and highlight a new recessionary mechanism.

4.1 Average Effect: The Role of Borrowing Constraint Risk

Estimates. As shown previously, the difference between equilibrium coefficients in the

second-order and first-order perturbations of the model provides a measure of aggregate

precautionary savings motives that relies on the model departure from certainty equiv-

alence with respect to aggregate risk. Table 3 reports the corresponding averages for

equilibrium variables to highlight the roles of aggregate shocks to borrowing constraints

and productivity. The first column reports average values in the baseline steady state

of the economy. The second column reports the contribution of aggregate borrowing

constraint volatility σφ, and the third column reports the contribution of aggregate pro-

ductivity volatility σz, in percentage deviations from the stationary steady state without

aggregate shocks.

Borrowing constraint risk. Aggregate fluctuations in borrowing constraints increase

households’ savings to income and lower debt to income by about 45%. In equilibrium,

they lead to a 25.4% lower risk-free rate than in a model with fixed borrowing constraints.

Even when aggregate shocks themselves are temporary, aggregate volatility generates

the low-debt and low-rate environment of the post-Great Recession period. Furthermore,

borrowing constraint risk has a recessionary effect, which Subsection 4.3 explores in more

26



Table 3: Average effect of aggregate precautionary motives

(1) (2) (3)
Variable Baseline Borrowing constraint Productivity

model volatility σφ volatility σz

Savings/income 1.73 +45.4% < 0.1%
Debt/income 0.23 -45.1% < 0.1%
Interest rate 1.80% -25.4% −0.1%
Wage 1.49 +0.9% < 0.1%
Profits 0.33 -1.5% < 0.1%
Employment 0.44 -2.5% < 0.1%
Output 1.00 -1.6% < 0.1%
Consumption 1.00 -1.6% < 0.1%

Notes: Columns 2 and 3 report equilibrium differences, in percentage deviations, between the baseline model with aggregate risk
(column 1) and counterfactual models without aggregate risk. Markets clear for each model, other parameters are fixed at their
baseline values. One period is a quarter, variables are annualized.

detail. The volatility σφ decreases consumption, output, and profits by about 1.5%, and

employment by 2.5%. In equilibrium, the wage increases by 0.9% to prevent households

from further decreasing their work hours. Overall, the contribution of aggregate fluctua-

tions in borrowing constraints to precautionary savings is sizable. This impact is increas-

ing in risk aversion γ, in the persistence ρφ and volatility σφ of borrowing constraints, and

in inequality in borrowing constraints between households φ(θ).

Several assumptions guarantee that these estimates are a lower bound on aggregate

precautionary motives. First, the endogenous risk-free rate ensures that savings are not

overstated as they would be with a fixed rate. The model captures the equilibrium feed-

back loop through which higher risk increases savings, which decreases the equilibrium

rate, which makes saving less attractive. It also matches the level and the dynamics of the

risk-free rate, which largely determine savings. Second, households save and borrow at

the same rate. With a higher borrowing rate, households would have a stronger incen-

tive to save. Third, households can increase their labor supply and receive government

transfers instead of saving when their borrowing constraints become more binding. So

savings are not overstated for the poorest households.

Productivity risk. Importantly, the same counterfactual with respect to the volatility of
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aggregate productivity shocks σz demonstrates that their contribution to precautionary

behavior is negligible. Aggregate productivity risk only slightly decreases the risk-free

rate by 0.10%, while other variables remain unchanged. These results are consistent with

low costs of business cycles in the literature though they highlight that these costs are

much higher when changes in credit conditions are accounted for. The role of borrowing

constraint risk is explained both by the higher volatility of the constraints themselves and

their much higher impact on households’ ability to smooth consumption.

Decomposition. The estimates in Table 3 generate a decomposition of the various pre-

cautionary motives, which is obtained by solving the model with and without the various

sources of idiosyncratic and aggregate risk. The model separately identifies three motives.

First, the standard idiosyncratic motive in heterogeneous household models has the

largest impact on savings. The combination of income risk, prudence u′′′ > 0, and static

borrowing constraints (see, e.g., Kimball (1990)) increases liquid savings by 88 pp from

31% to 119% of average income (in annual terms) compared to an economy without risk

where they are only determined by intertemporal substitution. In equilibrium, it de-

creases the risk-free rate by 5.4 pp from 7.80%, when it is given by 1/β− 1, to 2.40%. In-

dividual income volatility increases future expected marginal utility because of Jensen’s

inequality, which increases savings in households’ Euler equation. Finally, the combina-

tion of income shocks and borrowing constraints hampers consumption smoothing for

households that are at or near their borrowing constraints.

Second, the aggregate financial motive due to stochastic borrowing constraints further

increases savings by 54 pp from 119% to 173% of average income, which represents about

60% of the effect of idiosyncratic risk. This sizable impact cannot be ignored when ana-

lyzing households’ balance sheets. In equilibrium, it further lowers the risk-free rate by

0.6 pp from 2.40% to 1.80%, which represents more than 10% of the effect of idiosyncratic

risk. Interestingly, the aggregate financial motive leads to substantial costs of business

cycles as it decreases consumption by 1.6% on average. This result is an important de-

parture from existing settings that focuses on real business cycles and find close to zero

effect.
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Third, the impact of the aggregate real motive due to productivity shocks is negligible.

This motive acts in the same way as the idiosyncratic motive as aggregate productivity

shocks also result in individual labor income changes. However, these shocks are both

much smaller and less persistent than idiosyncratic income shocks. Moreover, they have

a uniform impact across the distribution of households.

4.2 Heterogeneous Effects: The Role of “Middle-Class” Households

Given these large average effects, what are the effects of aggregate precautionary motives

in the cross section of households? Figure 1 reports nonlinear policy functions to decom-

pose their effects across various levels of net savings b for a household with the median

income. The blue lines depict policy functions in the stationary steady state without ag-

gregate risk (first order), and the orange line depict them in the stochastic steady state

with aggregate risk (second order).

Borrowing constraint risk leads households to consume less c, save b′ − b and work n

more, as shown by the differences between the orange and the blue lines. This effect is

especially large for “middle class” households with some debt b ≤ 0 but not the highest

debt levels in the economy. In annual terms, such households have debt levels that are

close or slightly higher than the average annual ratio of debt to income of 0.23, between

10% and 50% of average income. Compared to these households, precautionary motives

are lower for the very poorest group by at least a factor of two.

Replicating the same comparison for productivity groups θ1 to θ5 instead of net sav-

ings shows that this result also holds for income. The effect of aggregate risk on pre-

cautionary behavior is larger for low income households with productivity θ2 and θ3,

while it is lower for both poorer households with θ1 and richer households with θ4 and

θ5. Middle-class households θ2 and θ3, benefit less than the poorest from the progressiv-

ity of government taxes and transfers, and they have less liquid assets than the richest.

The highest-income households are the only ones to consume slightly more. The lower

risk-free rate increases their incentive to consume the consumption good and leisure.
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Figure 1: Heterogeneous effects of aggregate precautionary motives on households’
choices

Notes: Policy functions describing how households with the median income optimally choose consumption (upper left panel), the
stock and flow of net savings (resp. upper right and lower left), and hours worked (lower right) as a function of their current savings.
The blue lines (order 1) depict policy functions without aggregate precautionary motives and the orange lines (order 2) show their
heterogeneous effects for various levels of net savings.

Mechanism. What explains the large and heterogeneous effects of stochastic borrowing

constraints? Because of the departure from certainty equivalence, households anticipate

the potential volatility of borrowing constraints and they save to insure against future

binding borrowing constraints. The stochastic steady state of the economy shifts in re-

sponse to a higher precautionary motive: on average, households accumulate less debt,

more liquid assets, and the risk-free rate is lower.

The strongly nonlinear effect of shocks to borrowing constraints also explains their

heterogeneous impact across households. The second-order solution of the model shows
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that the economy’s response to a tightening of borrowing constraints is amplified be-

cause households tend to respond more when they are close to their constraints. In

contrast, nonlinearities are negligible for aggregate productivity shocks, which affect all

households identically. This nonlinear effect is also absent from models with the near-

aggregation property, in which prices and quantities respond linearly to aggregate shocks

as they would in a representative agent economy (Krusell and Smith (1998)).

4.3 Real Effects: The Recessionary Impact of Borrowing Constraints

What are the real effects of these motives? This subsection shows that, contrary to ag-

gregate productivity shocks, changes in households’ borrowing constraint have large im-

pacts on consumption and employment, which lead to higher estimates of the cost of

business cycles than previously thought. The reason is a new recessionary mechanism of

borrowing constraints, for which I provide empirical support in Section 5 below.

Impact on business cycle volatility. Table 4 reports the result from a variance decompo-

sition that quantifies the contributions of aggregate shocks to productivity and borrowing

constraints to business cycle volatility. This computation is a new exercise in a heteroge-

neous agent model with incomplete markets and aggregate risk. It relies on the solution

approach in Section 2 and uses the nonlinear laws of motion of the economy (see Ap-

pendix B.2 for details).

The results show that borrowing constraint fluctuations are responsible for a large

fraction of business cycle volatility that dominates the role of aggregate productivity.

More than half of the volatility in output, consumption, and employment is due to bor-

rowing constraints. In contrast, aggregate productivity mostly explains changes in wages,

which scale one for one with z. Interestingly, fluctuations in borrowing constraints have

real effects even without price rigidity because they lead to a decrease in total employ-

ment when credit contracts.

Recessionary mechanism. To explain these effects, I compare the economy’s response

to aggregate productivity and borrowing constraint shocks, both in the model without
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Table 4: Contributions of aggregate shocks to business cycle volatility

Variable Borrowing constraints Productivity

Interest rate 59% 41%
Employment 52% 48%
Wage 21% 79%
Profits 59% 41%
Output 59% 41%

Notes: Variance decomposition: shares of the volatility of business cycle moments that are accounted for by borrowing constraints
(second column) and productivity shocks (third column). Variance shares are computed by bootstrap as the Monte-Carlo average of
the variance decompositions of generalized forecast errors at a large forecasting horizon (H = 1000 periods). The computations use
N = 500 simulations.

and with aggregate precautionary motives.

Nonlinear impulse response functions. Figure 2 plots the economy’s response to a one

standard deviation shock to borrowing constraints, under the linear dynamics with cer-

tainty equivalence and without precautionary motives (order 1), and the nonlinear dy-

namics with precautionary motives (order 2). Aggregates are computed using the time-

varying path of individual policy functions and histogram weights. Deviations are from

the steady state. These results show that all variables stay persistently low following a

tightening of households’ borrowing constraints with precautionary motives.

Borrowing constraints are tightened for all households, but lower income groups are

able to borrow less than higher income groups, reflecting individual differences in their

ability to borrow. Constrained households are forced to reduce their debt and increase

their net savings. This leads them to decrease their consumption of goods and leisure.

They trade off working more to smooth consumption against the disutility of labor. Debt

to income decreases persistently, as well as output, which is equal to consumption in

equilibrium. The decrease in consumption results from the composition of low-income

constrained households decreasing their spending, and richer unconstrained households

increasing theirs because they earn a lower return on their savings. The decrease in the

risk-free rate equates the larger savings demand from the former with the lower demand

from the latter.

Amplification. The amplification of shocks to borrowing constraints is large for house-
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Figure 2: Household responses to aggregate borrowing constraint shocks

Notes: Nonlinear impulse response functions to a one standard deviation shock to borrowing constraints εφ. Borrowing constraints
(upper left panel) are shown as a fraction of annual steady state output for low to high income households (resp. lowest to highest
line). The other five panels compare impulse response functions in the first-order (linear, in blue) and second-order perturbations
(nonlinear, in orange) of the model. Initial period: steady state. One period is a quarter, variables are annualized.

hold debt and the risk-free rate. The initial impact is amplified by a factor of 5 for debt

to income, 4 for the risk-free rate, 1.5 for consumption, output and profit, and 1.4 for

the wage. While the decrease in the risk-free rate (in response to a one-time shock) is

short-lived, other variables stay persistently low. The sharp decline in the rate causes

consumption and employment to rebound (simultaneously, profits slightly increase and

the wage slightly decreases). However, the rebound is short-lived. The large persistence

ρφ, which induces borrowing constraints to stay persistently low, further decreases con-

sumption, employment, and debt to income. The decrease in the risk-free rate cannot

offset the quantity restriction imposed by tighter constraints.
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Employment. Appendix Figure A3 plots the response of employment, which house-

holds can use to insure against shocks to their borrowing capacity. It shows a recessionary

effect of borrowing constraints, for which I find empirical support in Section 5.

There is a composition effect between, first, less productive and constrained house-

holds who work more to smooth consumption when they are forced to deleverage and,

second, more productive and unconstrained households who consume more leisure as

they decrease their savings because of a wealth effect. The sign of the overall output and

employment response depends on which effects dominates. In the model, output declines

because more productive agents work less, despite less productive agents working more.

This result is due to stochastic borrowing constraints and is absent from models with

fixed borrowing constraints. In these models with deterministic shocks and perfect fore-

sight, households near the constraint choose to work more because they anticipate the full

trajectory of credit shocks, at odds with the data. In contrast, in a model with stochastic

borrowing constraints, households anticipate that shocks will mean-revert, which leads

less of them to increase their work hours.

This effect is reinforced by the intertemporal substitution effect that is due to the de-

crease in the risk-free rate, which induces all households to consume more leisure in the

current period. Overall, this leads to a decrease in total employment. This generates

an economy with persistently low household debt and rates, but also depressed output,

which helps the model match the post-Great Recession data.

5 Empirical Implications for Household Credit

This section highlights the empirical implications of aggregate precautionary motives and

provides empirical support for the model calibration. Using novel structural estimates

of shocks to borrowing constraints from the model, I show that precautionary motives

are key to explain the simultaneous household deleveraging and consumption recovery,

which is a central feature of the post-Great Recession period. Structural estimates of bor-

rowing constraints are consistent with the data, though they uncover a slightly milder

and more persistent credit contraction than suggested by lending surveys. Such estimates
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help better understand the credit landscape faced by borrowers.

5.1 Explaining the Post-Great Recession Puzzle

Empirical test. I empirically validate the model calibration by examining its ability to

match the dynamics of household balance sheets and consumption in the post-Great Re-

cession period. From 2009 to 2019, household debt and the risk-free rate remained per-

sistently low while consumption quickly recovered from the recession. This “creditless

recovery” is common to multiple credit crunches over time and across countries (see, e.g.,

Claessens, Kose, and Terrones (2009)). Yet, models with fixed borrowing constraints typ-

ically fail to explain such changes. Indeed, higher future consumption should increase

current debt and the risk-free rate through an intertemporal substitution motive. Con-

versely, a lower rate should induce households to consume more early on, instead of

saving and increasing their future consumption. Therefore, addressing this puzzle is a

stringent test of the model. In addition, this exercise requires matching the entire time

series for the main variables, in addition to their averages in the calibration of Section 3.

The results show that the combination of stochastic borrowing constraints and aggregate

productivity risk is key to help the model explain the data.

Model fit. Using a particle filter, I estimate the trajectories of structural shocks to pro-

ductivity and borrowing constraints that generate the observed dynamics for consump-

tion and the real risk-free rate. Aggregate precautionary motives and the nonlinear dy-

namics of the model are key to match the data in times of high volatility. These are, to the

best of my knowledge, the first dynamic estimates of structural shocks in a heterogeneous

agent model with incomplete markets and aggregate risk. This is a computationally chal-

lenging exercise, which relies on the model representation of Section 2. Appendix B.3.2

details the estimation procedure.

In the data, the time series for the real risk-free rate is measured as the 5-year treasury

inflation-indexed securities constant maturity rate (H.15 Selected Interest Rates, Federal

Reserve Board). Aggregate consumption is measured using real personal consumption

expenditures (Bureau of Economic Analysis), for which I compute the deviation from its
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initial value in the sample to make it comparable with the model.

Figure 3 reports the fit of the model after estimating the shocks. The model success-

fully addresses the post-Great Recession puzzle. It exactly matches the dynamics of ag-

gregate consumption and it almost exactly matches the risk-free rate, except around 2013

in the vicinity of the Taper Tantrum when it is slightly higher.

Figure 3: Model fit and solution of post-Great Recession puzzle

Notes: Risk-free rate (in annual percentage terms; on left axis, in blue) and consumption deviation from 2006Q3 value (on right axis,
in orange), predicted by particle filtering in the nonlinear version of the model with precautionary savings (solid lines) vs. the data
(dashed lines). N = 20, 000 particles simulated. Sources: FRB, BEA (quarterly samples). One period is a quarter.

Out-of-sample fit. I further validate the calibration by examining its ability to replicate

the dynamics of debt and employment. Figure 4 shows that it also closely matches these

dynamics, which were not targeted by the estimation. In the data, household debt is mea-

sured as total revolving credit owned and securitized (Federal Reserve Board). Employ-

ment is measured as civilian employment-population ratio (Bureau of Labor Statistics)

since the model has a continuum of measure 1 of households and therefore aggregate

employment N is the ratio of the employed to the entire population.
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First, the model replicates the hump-shaped dynamics of household debt to income,

which starts with the run-up to the crisis until 2008, then decreases and eventually in-

creases again around 2015. The model overstates the decrease in household debt in the

last part of the sample, for which the large persistence of borrowing constraint shocks may

be responsible. Second, importantly, the model matches the decrease in employment in

the data that follows the credit contraction and is partly responsible for the decrease in

consumption. This result provides empirical support for the recessionary effect of bor-

rowing constraints highlighted in Section 4. Similarly to household debt, the decrease in

employment is slightly overstated by the model, by about 10%, at the end of the sample.

Figure 4: Out-of-sample model fit for household debt and employment

Notes: Debt/income (left panel) and employment (right panel) implied by the nonlinear estimation of the model with a particle filter.
The solid lines depict model results and the dashed lines the corresponding data. Variables are in log-deviations from their 2006Q3
values. One period is a quarter.

5.2 The Dynamics of Borrowing Constraints

Model estimates. I conclude by showing that the model implies realistic dynamics for

both borrowing constraints and productivity, providing empirical support for their cal-

ibration in Section 3. I highlight what policymakers can learn from these estimates in
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addition to lending surveys.

Figure 5 plots the dynamic estimates for aggregate shocks to households’ borrowing

constraints and productivity in the post-Great Recession period. They uncover two cen-

tral patterns. First, there was a persistent tightening in borrowing constraints throughout

the period, which were far from having recovered at the end of the sample. Constraints

fell by almost 20% from 2007 to 2014. Then, they rebounded by 6 pp, before slowing down

their recovery as they only increased by 1 pp from 2014 to 2018. Second, there was a V-

shaped recession in productivity. Productivity only fell by slightly more than 2% during

the NBER-dated recession itself (2008-2009), but then it quickly reverted to its previous

level in less than two years.

These two ingredients allow the model to simultaneously explain the consumption re-

covery and the persistent decrease in the risk-free rate and household debt. The decrease

in household debt to income by almost 30% and the 3 pp decrease in the risk-free rate

(in annual terms) result from the large aggregate precautionary motive that arises from

the tightening of households’ borrowing constraints. The precautionary motive, which

is due to slow-moving borrowing constraints, is exacerbated by the short-lived drop in

aggregate productivity, which induces constrained households to deleverage and save

quickly. The risk-free rate decreases to clear the savings market and stays persistently

low as constraints remain tight.

Comparison with data. Importantly, the model generates realistic estimates of aggre-

gate shocks, which closely track estimates from survey data. First, the 18% tightening of

households’ borrowing constraints in the model aligns with the 25% decrease in credit

card limits in the data (Consumer Credit Panel, Federal Reserve Bank of New York).

Credit limits steadily declined from 2008 to 2011 before only slowly going back to their

previous values, which they reached only in 2020. During the same period, 20% of bor-

rowers had a credit card account closed, which completely prevented them from access-

ing credit. These changes have important effects on borrowing constraints as more than

three quarters of U.S. households have a credit card.

Second, the onset of the tightening of borrowing constraints in the model exactly
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Figure 5: Dynamic estimates of borrowing constraints and productivity

Notes: Structural credit (left axis, blue) and aggregate productivity shocks (right axis, orange) estimated by particle filtering. Variables
are in log-deviations from their 2006Q3 values. Quarterly sample, 2006Q3-2017Q2. One period is a quarter.

matches the data, including at quarterly frequency. The results are the same as in the

Consumer Credit Panel, in which credit card limits first decreased in the first quarter of

2008. I also use survey data from the Senior Loan Officer Opinion Survey on Bank Lend-

ing Practices (Federal Reserve Board) to confirm this result, which are directly reported

in Appendix Figure A4. There was a sharp increase in the net percentage of lenders that

reported tightening their lending standards in the first quarter of 2008 as well. Though

this measure is hard to translate into actual changes in borrowing constraints, the model

provides the first structural estimate of this pass-through, which is easier to interpret. In

the survey, the share of lenders tightening credit conditions increased by 70 percentage

points for both credit cards and auto loans from 2008 to 2011. In comparison, the model

estimates suggest that the actual tightening of constraints was milder but more persistent.

Third, the model estimates for aggregate productivity shocks closely track empirical

measures of total factor productivity in the data, both qualitatively and quantitatively,

providing further external validation. TFP variations in the data are reported in Appendix

Figure A5. They are measured from the Penn World Tables at constant national prices for

the U.S. The widely used measure of Fernald (2014) delivers similar results. Aggregate
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productivity fell between 1% and 2% compared to its previous trend between 2007 and

2010. Then, it quickly reverted back to its previous trend. The model exactly matches this

pattern without targeting it.

6 Conclusion

Little is known about the drivers of households’ precautionary savings beyond idiosyn-

cratic risk to their income, health, or family situation. Perhaps especially surprisingly,

while economy-wide changes in borrowing constraints are the subject of a rich recent

empirical literature, it is still unclear whether and how households adjust to this risk.

Using a model with heterogeneous households and incomplete markets, this paper

presents a new dynamic decomposition of precautionary motives that highlights the role

of such aggregate risk. The aggregate precautionary motive that arises from fluctuations

in borrowing constraints is especially large, which refines received wisdom about the low

costs of business cycles. This motive is the strongest and leads to relatively higher savings

for middle-class households with average levels of debt, in contrast with the recent focus

of economists on the top and bottom of the wealth distribution.

Aggregate precautionary motives are a key ingredient to help widely used models

capture periods of “creditless recoveries” such as the post-Great Recession era. Interest-

ingly, while the dynamic estimates of borrowing constraints from the model track mea-

sures of credit conditions in the data based on lending surveys, they imply a slightly

milder and more persistent credit contraction, which paints a more nuanced picture of

the recent credit landscape. These estimates are also useful to translate popular measures

of credit conditions (such as the share of lenders tightening standards) into direct changes

in borrowing constraints, which can be more easily interpreted by policymakers and call

for different responses.

More generally, my results highlight that environments with various degrees of ag-

gregate risk have widely different implications for household savings. Studying these

differences across countries may be a useful direction for work on international house-

hold finance (e.g., Badarinza, Campbell, and Ramadorai (2016) and Haliassos, Jansson,
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and Karabulut (2017)).
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Appendix

A Dynamic Decomposition of Precautionary Motives

A.1 Detailed Solution Approach

Step 1: Projection. Variables are index by time t to denote their dependence on aggre-

gate states
(
φt, zt, λt

)
. The distribution of households over Θ × B is approximated as a

histogram by a finite number of mass points on the Cartesian product of Θ = {θi}Nθ
i=1 and

a fine grid
{

bj
}N f

b
j=1. Φt(θi, bj) denotes the fraction of households with productivity θi and

net bond holdings bj. Its evolution is implied by policy functions according to:

Φt+1

(
θi′ , bj′

)
= ∑Nθ

i=1 ∑
N f

b
j=1 Πθ (θi′ |θi)ωi,j,j′,t ×Φt

(
θi, bj

)

where ωi,j,j′,t =



b′−bj′−1
bj′−bj′−1

if b′t
(
θi, bj

)
∈
[
bj′−1, bj

]
bj′+1−b′

bj′+1−bj′
if b′t

(
θi, bj

)
∈
[
bj′ , bj′+1

]
0 otherwise,

(23)

where bj′−1, bj′ , aj′+1 are asset points on the fine grid that bracket the value of next period

assets implied by the policy function. ω depend on t because policy functions depend on

the aggregate state, i.e. b′t
(
θi, bj

)
= b′

(
θi, bj; φt, zt, λt

)
. For instance, if credit shocks φt are

low, tightening borrowing constraints, this distorts and shifts upwards the function b′ (.)

because households are forced to save more, which through its impact on ω results in less

mass on low asset values.

1. Household saving and labor supply policy functions are interpolated using linear

splines with respectively Nb and Nn knots. Households’ saving function b′ (.) is

characterized by a critical level of assets χθ at which their borrowing constraints

start binding, which depends on productivity. For every θ ∈ Θ, let bθ,j = χθ + xj,

with 0 = x1 < ... < xNb denote the splines’ knots for b′ at which households’

Euler equations hold with equality. For b ≤ ξθ, savings b′ (θ, b) = −φφ (θ) h (θ)

are determined by the borrowing limit (φt = φ in the deterministic steady state). It
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defines the collocation nodes at which we force households’ optimality conditions to

hold to solve for policy functions. For a given aggregate state
(
φ, z, Φ

)
, the saving

function is finitely represented by Nθ × (Nb + 1) coefficients giving the value of

savings at the knots and the threshold below which households are constrained. So

is the labor supply function, with Nθ × Nn values at the knots for labor (which may

differ from the knots for savings). The consumption function at the saving knots is

backed out from the budget constraint:

ct
(
θ, bθ,j

)
= bθ,j + (1− τ1 (θ))wtθnt

(
θ, bθ,j

)
+ T (θ) + πt − τ0t −

b′t
(
θ, bθ,j

)
1 + rt

(24)

2. Equilibrium conditions for the discrete model are listed below. The first set of

equations and the following two involve predetermined variables: the histogram

weights (because weights should sum to 1, we keep only track of the number of

weights minus 1), the credit and aggregate productivity shocks. The next sets of

equations involve jump variables: the asset price, aggregate labor demand, the

wage, profits, aggregate output, aggregate consumption, and the (discretized ver-

sions of) policy functions for labor and savings (including values of coefficients at

knot points and borrowing constraint thresholds). The inclusion of some variables

among jump variables, whose dynamics we want to solve for, is not strictly speak-

ing necessary (it is the case for aggregate labor demand, the wage, profits, aggregate

output and aggregate consumption). Their equation counterparts are definitional,

and their values can be backed out from the other jump variables without including

them explicitly in the equilibrium system of equation. However, including them

makes the system dynamics better behaved numerically, because it provides more

information to the code when taking derivatives with automatic differentiation.

In words, these equations are: the laws of motion for the distribution, credit and

aggregate productivity; the market clearing conditions for assets and labor; the def-

initions of aggregate output, consumption, the wage and profits; the intratemporal

optimality condition for households’ labor supply, and the intertemporal optimal-

ity condition for savings/consumption (Euler equation). In the Euler equations, the

t-conditional expectation is about t + 1 values of aggregate shocks (next period bor-
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rowing constraints and wage influence current decisions), and is taken with respect

to their values at t:

Φt+1
(
θi′ , bj′

)
−∑Nθ

i=1 ∑
N f

b
j=1 Πθ (θi′ |θi)

(
ωi,j,j′,tΦt

(
θi, bj

))
= 0, i′ ∈ [|1, Nθ |] , j′ ∈

[
|1, N f

b |
]

log φt+1 − log φ− ρφ(log φt − log φ)− ε
φ
t+1 = 0

log zt+1 − ρz log zt − εz
t+1 = 0εφ

εz

 iid∼ N

0,

 σ2
φ σφσzρφz

σφσzρφz σ2
z


B−∑Nθ

i=1 ∑
N f

b
j=1 bjΦt+1

(
θi, bj

)
= 0

Nt −∑Nθ
i=1 ∑

N f
b

j=1 θint
(
θi, bj

)
Φt
(
θi, bj

)
Yt −∑Nθ

i=1 ∑
N f

b
j=1 ct

(
θi, bj

)
Φt
(
θi, bj

)
Ct −∑Nθ

i=1 ∑
N f

b
j=1 ct

(
θi, bj

)
Φt
(
θi, bj

)
wt = αzt

(
1

Nt

)1−α

πt = (1− α)ztK1−αNα
t

(1− τ1 (θi))wtθict
(
θi, bj

)−γ − ψnt
(
θi, bj

)η
= 0, i ∈ [|1, Nθ |] , j ∈ [|1, Nb|]

ct
(
θi, bj

)−γ − β(1 + rt)Et

{
∑Nθ

i′=1 ct+1
(
θi′ , b′

(
θi, bj

))−γ
}
= 0, i ∈ [|1, Nθ |] , j ∈ [|1, Nb|]

(25)

Step 2: Stationary steady state. Denote as yt the 6 + Nθ × (Nn + Nb + 1) vector of cur-

rent jump (control) variables. Denote as xt the Nθ × N f
b − 1 + 2 vector of current state

(predetermined) variables. Equilibrium conditions are stacked in a multivariate, vector-

valued function F (.) that represents the nonlinear system of equations that defines the

equilibrium:

Et
[
F
(
yt, yt+1, xt, xt+1, ε

q
t+1, εz

t+1
)]

= 0 (26)

Solving for the deterministic steady state of the economy (without aggregate shocks)

amounts to finding y, x that solve the following system of equation, which has as many

unknowns as equations:

F (y, y, x, x, 0, 0) = 0 (27)

In theory, it could be solved directly using a nonlinear equation solver. In practice,

there is no guarantee that numerical equation solvers will converge when we use pro-
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jection methods to approximate policy functions. In addition to solving the households’

consumption problem, the difficulty comes from having endogenous labor supply, en-

dogenous government taxes, and solving for two equilibrium prices (wage and interest

rate). I also solve for the value of the disutility of labor ψ that normalizes steady state

output Y to 1.

Therefore, to make the problem more stable, I use the following variant of policy time

iteration. First, given a guess for x and y,12 compute government taxes for all agents.

Given taxes and the guess, solve for households’ labor supply policy. Given that pol-

icy, solve then for households’ savings policy. Using the policy functions, compute the

implied stationary distribution (using an eigenvector method), and the new taxes. The

process is repeated until policy functions converge. I use Broyden’s method every time

a numerical solver is needed, and automatic differentiation to compute exact derivatives.

Since the convergence of the numerical solver is not guaranteed under any initial guess

and parameter combination, I calibrate the steady state of the model with a homotopy

method. That is, I slowly change parameters until the target is reached, starting from a

combination under which the model steady state is easily computed. If needed, I modify

the state space boundaries over that process.

1. Start with a guess for the risk-free rate and labor demand
(

p(0), N(0), ψ(0)
)

, for pol-

icy function values
(

b
′(0) (.) , n(0) (.)

)
, and the cross-sectional distribution Φ(0) (.)

(it is only needed to compute the first iterate of government taxes). It is easier to

solve for the risk-free rate and labor demand demand, and back out the interest rate

1/p − 1 and the wage (from the firm’s optimal labor choice) than solving directly

for the latter. Thus having
(

p(0), N(0)
)

is equivalent to having
(

r(0), w(0)
)

.

2. Given those, use the endogenous grid method to iterate backwards on the house-

hold’s optimality conditions (the Euler and the labor intratemporal equations), and

obtain a new guess for policy functions that will be supplied to the nonlinear policy

solver solving the household’s problem,
(

b
′(1) (.) , n(1) (.)

)
. This requires comput-

12A good guess is obtained by using the endogenous grid method (Carroll (2006)) to iterate backwards
on the household’s optimality conditions, starting from any feasible guess.

4



ing endogenous government taxes (fixed every period because we are at the steady

state), which is why we need a guess for the cross-sectional distribution.

3. The guess for prices is supplied to a second nonlinear solver wrapped around the

policy solver, which solves for the prices clearing the savings and the labor market,

and for the disutility of labor normalizing steady state output to 1. Within the price

solver, I ensure that prices and labor disutility are positive (p(n), N(n), ψ(n) > 0), and

the stability condition β/p(n) ≤ 1 holds at every iteration n. The following steps

occur within the price solver, and their iterates start at n = 1.

4. Given the exogenous law of motion for idiosyncratic income and the policy func-

tions, compute the associated stationary distribution of households Φ(1) (.) (I use

the eigenvector method). Also compute the wage and profits from the firm’s op-

timality condition: w(1) = α
(

1
N(1)

)1−α
, and π(1) = (1− α)

(
N(1)

)α
. Then, given

prices, policy functions and the distribution, compute endogenous government taxes

τ
(1)
0 .

5. Given prices, profits, taxes, and savings policies b′(1) (.), solve the household’s labor

supply equation (using n(1) (.) as a guess), and denote n(2) (.) the new labor supply

policy. It should always be non-negative. Here I use a nonlinear equation solver

with Broyden’s method, and supplies it with the Jacobian of the system of intratem-

poral equations. Here and later, derivatives are computed exactly with automatic

differentiation, implemented with Julia’s ForwardDiff package.

6. Back out the associated consumption function from the budget constraint. If it has

a non-positive entry at a point in the state space, adjust n(2) (.) at that point such

that the household consumes cmin = 0.001. This step helps with convergence of the

solver when solving for savings in the next step.

7. Given prices, profits, taxes and the new labor policy n(2) (.), solve the household’s

Euler equation (using b′(1) (.) as a guess), and denote b′(2) (.) the new savings policy.

Use the same solver as for labor.
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8. This completes one iterate in the loop solving for policy functions given prices. If

the new policy functions
(

n(2) (.) b′(2) (.)
)

are close enough to the previous ones(
n(2) (.) b′(2) (.)

)
, then stop and we have solved the household’s problem given

prices
(

p(0), N(0), ψ(0)
)

. Otherwise, iterate on steps (d)-(g). That is, given
(

p(0), N(0), ψ(0)
)

(hence the same wages and profits), compute new government taxes τ
(n+1)
0 . Then

solve for new policy functions
(

n(n+1) (.) b′(n+1) (.)
)

, compare them to the previous

ones
(

n(n) (.) b′(n) (.)
)

, and stop when they are close enough. This completes the

solution of the household’s problem given prices.

9. Using the law of motion of the exogenous income shock and the optimal savings

function, compute the stationary distribution Φ(2). Use it with policy functions to

compute aggregate values for savings, labor supply and output. The price solver

then chooses new values for prices and disutility of labor,
(

p(1), N(1), ψ(1)
)

, to solve

the following three equations:

B−∑Nθ
i=1 ∑

N f
b

j=1 bjΦ
(2)
t+1

(
θi, bj

)
= 0

N(1) −∑Nθ
i=1 ∑

N f
b

j=1 θin
(
θi, bj

)
Φ(2) (θi, bj

)
Y(1) − 1 = 0⇔

(
N(1)

)α
− 1 = 0

(28)

10. Then go back to step (a) with the new prices, and iterate until convergence, i.e. pol-

icy functions and the stationary distribution have converged, and the three equa-

tions are satisfied. We then obtain prices, policy functions and a distribution that

solve the model in the deterministic steady state.

Step 3: Perturbations. Implement a first- and a second-order perturbation of the dis-

crete model around its steady state. The solutions to the equilibrium expectational differ-
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ence equation Et [F (.)] = 0 are of the following form (Schmitt-Grohe and Uribe (2008)):

xt+1 = h (xt, η) + η


0

ε
q
t+1

εz
t+1


yt = g (xt, η)

(29)

where η is the perturbation parameter (there is only one such parameter) scaling the

amount of aggregate uncertainty in the economy. The goal is to solve for approximations

of the functions h, g.

1. For the first-order approximation of the model, several methods can be used. I

check existence and uniqueness, and verify that I obtain identical results using Sims’

gensys (Sims (2001)) and Klein’s methods (Klein (2000)), which commonly used in

macroeconomics. I briefly describe the input widely the output of Klein’s method

because it has a clear interpretation in terms of jump and predetermined variables.

We solve for a first-order approximation of g, h. Writing variables in deviations from

their steady state values (denoted as x̂, ŷ) and linearizing equilibrium conditions

around 0 (where variables equal their steady state values), we obtain

Fyt ŷt +Fyt+1Et [ŷt+1] +Fxt x̂t +Fxt+1Et [x̂t+1] +Fε
q
t+1

Et
[
ε̂t+1

q]+Fεz
t+1

Et
[
ε̂t+1

z] = 0

(30)

where the derivatives of F are evaluated at the steady state. They are sub-matrices

of the Jacobian of F , computed exactly with automatic differentiation. ŷ, x̂ terms

are vectors, so their (matrix) products with the derivative matrices of F are vectors.

The Jacobian is a matrix of dimension

{[
Nθ × N f

b − 1 + 2
]
+ [6 + Nθ × (Nn + Nb + 1)]

}
×
{

2×
[

Nθ × N f
b − 1 + 2

]
+ 2× [6 + Nθ × (Nn + Nb + 1)] + 2

}
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First-order approximations of the solution have the following form:

x̂t+1 = hx (x, 0) x̂t + η


0

ε
q
t+1

εz
t+1


ŷt = gx (x, 0) x̂t

(31)

2. For the second-order approximation of the model, I do a second-order approxima-

tion of equilibrium conditions around the steady state. It involves the Hessian of F ,

a large three-dimensional array computed by automatic differentiation, of dimen-

sion: {[
Nθ × N f

b − 1 + 2
]
+ [6 + Nθ × (Nn + Nb + 1)]

}
×
{

2×
[

Nθ × N f
b − 1 + 2

]
+ 2× [6 + Nθ × (Nn + Nb + 1)] + 2

}2

The second-order approximation of the solution has the form:

x̂t+1 = hx (x, 0) x̂t +
1
2 hxx (x, 0) x̂t

2 + 1
2 hηη (x, 0) η2 + η


0

ε
q
t+1

εz
t+1


ŷt+1 = gx (x, 0) x̂t +

1
2 gxx (x, 0) x̂t

2 + 1
2 gηη (x, 0) η2

(32)

where the terms equal to zero (in hη, gη, hxη, hηx, gxη, gηx) were canceled. x̂, ŷ terms

are vectors, gx, hx terms are matrices, hxx, gxx are 3-dimensional arrays, and hηη, gηη

are vectors. Thus products of x̂, ŷ vectors with first-order derivative matrices are

matrix products, those with second-order arrays are tensor products, and those

with η are simple constant times vectors products. I use Kim et al. (2008)’s gensys2

method to solve for the unknown coefficients. Schmitt-Grohe and Uribe (2008) pro-

pose instead to solve for the second-order coefficients in a linear system of equations

involving the Jacobian and the Hessian of F , and the first-order coefficients. While

most papers with representative agent models use this method, it is not tractable

in a setting with heterogeneous agents where the cross-sectional distribution is dis-
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cretized as a histogram, since it involves constructing and inverting a matrix whose

dimensions increases exponentially with the number of state variables. gensys2 al-

lows to reduce the dimensionality of the system of equation to solve by applying

a sequence of linear operations to the original system (Schur and singular value

decompositions).

A.2 Stochastic Steady State

To compute the deviations of the stochastic steady state from the deterministic one, I com-

pute a fixed point of the pruned laws of motion of the economy.13 The impulse response

functions (IRF) to credit and aggregate productivity shocks are computed by feeding the

laws of motion with nonzero innovations in the first period and iterating on them. I ver-

ify that market-clearing errors are close to zero over the simulated paths (Appendix Table

A1).

Pruning computes first-order projections of second-order terms, based on a first-order

expansion of the conditional expectation of the system’s deviation from steady state, ac-

cording to the following steps.

First, gensys2 solves a linearly transformed system, where original variables
(

x̂ ŷ
)′

that

solve Et [F (.)] = 0 are replaced by Z′
(

x̂ ŷ
)′

, where Z is a square, non-singular matrix.

To simplify notation, denote the transformed variables as
(

x̂ ŷ
)′

too. The second-order

solution to the transformed system has the form (see the paper for details):

x̂t+1 = F1x̂t + F2ηfflt+1 + F3η2 + 1
2 F11x̂t

2 + F12x̂tfflt+1η + 1
2 F22η2fflt+1

2

ŷt =
1
2 M11x̂t

2 + M2η2
(33)

The presence of cross-derivative terms in the transformed solution does not contradict

their absence in the original solution, since they can be canceled by Z. Then, it implies

13I use pruned laws of motion to alleviate the well-known problem that iterating on second-order laws
of motion gives rise to higher-order terms that do not increase the accuracy of the approximation and are
likely to lead to explosive paths. Pruning essentially computes first-order projections of second-order terms,
based on a first-order expansion of the conditional expectation of the system’s deviation from steady state.
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that for s > 0:

Et [x̂t+s] = F1Et
[
x̂t+s−1

]
+ F3η2 + 1

2 F11Et

[
x̂t+s−1

2
]
+ 1

2 F22η2Ωs

= F1Et
[
x̂t+s−1

]
+ F3η2 + 1

2 F11

(
Et
[
x̂t+s−1

]2
+ Σs−1

)
+ 1

2 F22η2Ωs

Et [ŷt+s] =
1
2 M11Et

[
x̂t+s

2
]
+ M2η2

= 1
2 M11

(
Et [x̂t+s]

2 + Σs

)
+ M2η2

Σs+1 = η2F2ΩtF2 + F1ΣsF1

(34)

where Ωs is the t-conditional variance-covariance matrix of fflt+s, and Σs is the t-conditional

variance-covariance matrix of x̂t+s, defined recursively by a discrete Lyapunov equation

(from the law of motion of x̂t+1).

Then, projecting Et
[
x̂t+s−1

]
terms on their first-order counterparts, denoted E1

t
[
x̂t+s−1

]
,

we obtained the pruned law of motion of the transformed solution:

Et [x̂t+s] = F1Et
[
x̂t+s−1

]
+ F3η2 + 1

2 F11

(
E1

t
[
x̂t+s−1

]2
+ Σs−1

)
+ 1

2 F22η2Ωs

Et [ŷt+s] =
1
2 M11

(
E1

t [x̂t+s]
2 + Σs

)
+ M2η2

E1
t [x̂t+s] = F1E1

t
[
x̂t+s−1

]
Σs+1 = η2F2ΩtF2 + F1ΣsF1

(35)

To compute the steady state of the second-order solution to the original system, we first

compute the steady state of the transformed system using its laws of motion. In particular,

we solve for the steady state value of expected deviations of transformed variables from

their steady state (set η = 1):

E [x̂] = (I − F1)
−1
(

F3 +
1
2 F22Ω + 1

2 F11Σ
)

E [ŷ] = 1
2 M11Σ + M2

where Σ = F2ΩtF2 + F1ΣF1

(36)

Finally, we back out the steady state values of original variables as Z
′−1
(

E [x̂] E [ŷ]
)′

.
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B Applications

B.1 Nonlinear Impulse Response Functions to Aggregate Shocks

To compute the economy’s impulse response functions, I use the pruned version of the

law of motion for transformed variables (for η = 1), for t ≥ 0:

x̂t+1 = F1x̂t + F2fflt+1 + F3 +
1
2 F11x̂1

t
2
+ F12x̂1

t fflt+1 +
1
2 F22fflt+1

2

ŷt =
1
2 M11x̂1

t
2
+ M2

x̂1
t+1 = F1x̂1

t + F2fflt+1

(37)

I then back out the path of original variables as
{

Z
′−1
(

x̂t ŷt

)′}
t
.

B.2 Variance Decomposition: Contributions of Aggregate Risks

B.2.1 First Order: No Precautionary Motives

The vector Y =
(

x y
)

of equilibrium objects contains the predetermined and the jump

variables. It is in deviation from steady state, but it doesn’t matter for this exercise because

we can just add the steady state vector, which will cancel out when taking variances. The

output from gensys is a law of motion for Y, consisting of an AR(1) matrix Φ and an

impact matrix Z:

(I −ΦL)Yt+1 = Zεt+1 (38)

where εt+1 =
(

ε
φ
t+1 εz

t+1

)′
is the vector of the two shocks, with covariance matrix Σ̃ε = 1 ρφ,z

ρφ,z 1

, and where the rows of Z corresponding to ε
φ
t+1 and εz

t+1 are

σφ 0

0 σz

.

Thus Var

σφ 0

0 σz

 Σ̃ε

 =

 σ2
φ ρφ,zσφσz

ρφ,zσφσz σ2
z

 = Σε.

First, we transform the shocks with covariance Σ̃ε so that they are orthogonal, i.e. their

covariance matrix is the identity matrix. This is done by Cholesky factorization. The

new orthogonal shocks are defined as νt = Qεt, with Q such that E [νtν
′
t] = I. Denoting

S = Q−1, εt = Sνt and SS′ = Σ̃ε. S is a lower triangular matrix given by the Cholesky
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factorization of Σ̃ε.

Then, we transform the economy’s law of motion from an AR(1) to an MA(∞) represen-

tation, using the fact that the eigenvalues of Φ are within the unit circle (we denote L the

lag operator). We also substitute for εt+1 = Sνt+1.

(I −ΦL)Yt+1 = Zεt+1

⇒ Yt+1 = (I −ΦL)−1 ZSνt+1

Yt+1 = ∑∞
k=0 ΦkLkZSνt+1

Yt+1 = ∑∞
k=0 ΦkZSνt+1−k

⇒ Yt+h = ∑∞
k=0 Φ̃(k)νt+h−k

(39)

for any forecasting horizon h > 0, and where Φ̃(k) = ΦkZS is a matrix of dimension

(number of variables,number of shocks). Here we consider N variables and 2 shocks.

Then, forecast errors at horizon h > 0 are:

et+h = Yt+h −Et [Yt+h]

= Φ̃(0)νt+h + Φ̃(1)νt+h−1 + Φ̃(2)νt+h−2 + ... + Φ̃(h−1)

= ∑h
i=1 Φ̃(h−i)νt+i

(40)

For variable Yj, j ∈ {1, ...N},

ej,t+h = ∑h
i=1 Φ̃(h−i)

j,. νt+i

= ∑h
i=1

(
Φ̃(h−i)

j,1 ν1,t+i + Φ̃(h−i)
j,2 ν2,t+i

) (41)

So the total forecast error variance at horizon h > 0 for variable Yj is, using the fact that

ν’s are mutually independent, identically distributed and serially uncorrelated:

Var
(
ej,t+h

)
=

h

∑
i=1

((
Φ̃(h−i)

j,1

)2
+
(

Φ̃(h−i)
j,2

)2
)

(42)
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Finally, the share of the forecast error variance of variable Yj at horizon h > 0 accounted

for by ν1 and ν2 (transformed versions of the original shocks εψ and εz) are respectively:

∑h
i=1

(
Φ̃(h−i)

j,1

)2

∑h
i=1

((
Φ̃(h−i)

j,1

)2
+
(

Φ̃(h−i)
j,2

)2
) and

∑h
i=1

(
Φ̃(h−i)

j,2

)2

∑h
i=1

((
Φ̃(h−i)

j,1

)2
+
(

Φ̃(h−i)
j,2

)2
) (43)

Results are sensitive to whether the matrix obtained from the Cholesky factorization is

lower or upper triangular. A lower triangular S implies that ν2 has no effect on ν1. Note

that because of the factorization, the ν shocks are not clearly interpretable as credit and

aggregate productivity shocks.

B.2.2 Second Order: The Role of Precautionary Motives

I use a generalized forecast error variance decomposition for nonlinear models (Lanne

and Nyberg (2016)). The starting point is the nonlinear (quadratic) model given by gensys2,

which can be written as

Yt+1 = f (Yt, εt+1) (44)

where G is a nonlinear function of the equilibrium vector and of innovations. As above,

the interpretation of shocks is clearer when ρφ,z = 0.

The generalized impulse-response function (GIRF) at horizon i > 0 (i.e. at date t + i) of

variable Yj, with respect to a credit shock (or aggregate productivity shock) of magnitude

δφ,t+1 (or δz,t+1) hitting at date t + 1, conditional on history of states ωt = yt, is defined as:

GIj
(
i, δφ,t+1, ωt

)
= Et

[
Yj,t+i|ε

φ
t+1 = δφ,t+1, ωt

]
−Et

[
Yj,t+i|ωt

]
and GIj (i, δz,t+1, ωt) = Et

[
Yj,t+i|εz

t+1 = δz,t+1, ωt
]
−Et

[
Yj,t+i|ωt

] (45)

Then, the generalized forecast error variance decomposition (GFEVD) of variable Yj at

horizon h > 0, is between the fraction of variance explained by credit shocks, and that
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explained by aggregate productivity shocks, respectively:

GFEVDj(h, δφ,t) =
∑h

i=0 GIj(i,δφ,t+1,ωt)
2

∑h
i=0 GIj(i,δφ,t+1,ωt)

2
+∑h

i=0 GIj(i,δz,t+1,ωt)
2

GFEVDj(h, δz,t) =
∑h

i=0 GIj(i,δz,t+1,ωt)
2

∑h
i=0 GIj(i,δφ,t+1,ωt)

2
+∑h

i=0 GIj(i,δz,t+1,ωt)
2

(46)

Because GIRF are nonlinear, GFEVD depend on the sign and size of the innovations δ.

I therefore compute average GFEVD using bootstrap. First, because the solution of the

model is based on perturbations around the steady state, we can get rid of the history

dependence in ω. Then, I simulate a history of credit and aggregate productivity inno-

vations of length T = 1000,
{

ε
φ
t , εz

t

}T

t=0
=
{

δφ,t, δz,t
}T

t=0 using

ε
φ
t

εz

 iid∼ N (0, I2) (with

gensys2 the innovation variances σ2
φ and σ2

z are incorporated in the GIRF matrices). For

each innovation δφ,t, I compute the associated GFEVDj(h, δφ,t) for variable Yj at horizon h.

Finally, the average GFEVD is obtained by averaging over individual GFEVDj(h, δφ,t)’s

by using the probability associated to each δφ,t by the standard normal p.d.f. (Because

N (0, 1) is symmetric, we should get something like an average of the GFEVD for a shock

δ = −1 and a shock δ = +1.) Computations are parallelized over the N dimension. It

takes about 17 hours to run the case N = 500, H = 1000 using 28 cores.

B.3 Dynamic Estimation of Aggregate Shocks

B.3.1 Kalman Filter: No Precautionary Motives

The first-order, linear state space representation of the model is obtained from gensys.

Using the above notation, the transition and the measurement equations are respectively:

Yt+1 = ΦYt + Zεt+1, εt+1
iid∼ N (0, Q)

Yobs
t+1 = H′Yt+1 + vt, vt+1

iid∼ N (0, R)
(47)

Φ and Z are readily obtained from gensys and Q = I2 (variance-covariance terms are

in Z by design). H is a selection matrix filled everywhere with zeros, and with ones for

the entries corresponding to the observable variables in Yt+1 (risk-free rate and consump-
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tion). There is no noise in the measurement equation, i.e. R = 02×2: the risk-free rate and

consumption are perfectly observed.

Using standard notation, denote Yt|t−1 = E
[
Yt|Yobs,t−1] (best linear predictor of Yt given

the history of observables Yobs until t− 1), Yobs
t|t−1 = E

[
Yobs

t |Yobs,t−1], and Yt|t = E
[
Yt|Yobs,t].

Also denote Σt|t−1 = E

[(
Yt −Yt|t−1

) (
Yt −Yt|t−1

)′
|Yobs,t−1

]
(predicting error variance-

covariance matrix of Yt given the history of observables until t− 1),

Ωt|t−1 = E

[(
Yobs

t −Yobs
t|t−1

) (
Yobs

t −Yobs
t|t−1

)′
|Yobs,t−1

]
,

Σt|t = E

[(
Yt −Yt|t

) (
Yt −Yt|t

)′
|Yobs,t

]
.

The goal of the Kalman filter here is to back out the sequences of forecasted observable

variables and underlying states
{

Yobs
t|t−1, Yt|t

}
implied by the model, given a sequence of

observable variables
{

Yobs
t
}

taken from the data. The algorithm proceeds as follows:

1. At t = 1, initial conditions Y1|0, Σ1|0 are set equal to their (deterministic) steady state

values. That is, Y1|0 = 0 (the initial system of equations was written in log de-

viations from steady state), and Σ1|0 is the solution to the Riccati equation Σ1|0 =

ΦΣ1|0Φ′ + ZI2Z′, which is solved by iterating on a symmetric, positive definite

guess Σ(0)
1|0 (using the stability of the system). I verify that the solution Σ(∞)

1|0 = Σ1|0

is symmetric and positive definite too. Following steps are for t ≥ 1.

2. Given Σt|t−1, Yobs
t , Yobs

t|t−1, compute Ωt|t−1 = H′Σt|t−1H + R = H′Σt|t−1H.

3. Compute Covt−1
(
Yobs

t , Yt
)
= E

[(
Yobs

t −Yobs
t|t−1

) (
Yt −Yt|t−1

)′
|Yobs,t−1

]
= H′Σt|t−1.

4. Compute the Kalman gain Kt = Σt|t−1H
(

H′Σt|t−1H + R
)−1

= Σt|t−1HΩ−1
t|t−1.

5. Compute Yt|t = Yt|t−1 + Kt

(
Yobs

t − H′Yt|t−1

)
(”nowcast” of the state).

6. Compute Σt|t = Σt|t−1−KtH′Σt|t−1 (variance-covariance matrix associated with the

”nowcast” error).
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7. Compute Σt+1|t = ΦΣt|tΦ′ + ZQZ′ = ΦΣt|tΦ′ + ZZ′ (next period forecast error

variance-covariance matrix).

8. Finally, compute Yt+1|t = ΦYt|t and Yobs
t+1|t = H′Yt+1|t (next period implied state, and

next period forecasted observables).

B.3.2 Particle Filter: The Role of Precautionary Motives

The second-order, nonlinear state space representation of the model is obtained from

gensys2. Using the above notation, the transition and the measurement equations are

respectively:

Yt+1 = f (Yt, Wt+1) , Wt+1
iid∼ N (0, Q)

Yobs
t+1 = H′Yt+1 + vt, vt+1

iid∼ N (0, R)
(48)

f is the quadratic mapping (from gensys2) used to compute impulse responses in the

second-order solution of the model (see above). Q = I2 (variance-covariance terms are

in the matrices part of f by design), and H is a selection matrix filled everywhere with

zeros, and with ones for the entries corresponding to the observable variables in Yt+1

(risk-free rate and consumption). I assume that there is some but very little noise in the

measurement equation, i.e. R = 10−6 × I2: the risk-free rate and consumption are close

to perfectly observed. This is because the joint density of measurement errors is needed

in the algorithm, so R cannot be zero.

Particles are i.i.d. draws
{

Yi
t−1, W i

t−1
}N

i=1 from the joint density p
(
Wt−1, Yt−1|Yobs

t−1
)
. Pro-

posed particles are i.i.d. draws
{

Yi
t|t−1, W i

t|t−1

}N

i=1
from the joint density p

(
Wt, Yt−1|Yobs

t−1
)
.

There are N of each of them. Here, the structural innovations W are independent of the

vector of predetermined and jump variables Y. Therefore, drawing from the proposed

joint density boils down to drawing from the innovations’ density, and then applying

the nonlinear mapping f to the previous proposed Y and the new innovations w, to get

the new proposed particle Y. As before, the sequence of observable variables
{

Yobs
t
}T

t=0

is taken from the data, with Yobs
0 = 0. That is, I assume w.l.o.g. that the beginning of

the sample represents the deterministic steady state (hence log-deviations are zero). The

algorithm proceeds as follows.
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1. At t = 1, set the initial condition Yi
0|0 = Yi

0 = W i
0 = 0 for all i = 1, ...N, i.e. the

log-deviation from the deterministic steady state is assumed to be zero at t = 0.

2. Generate N i.i.d. draws of proposed particles
{

Yi
t|t−1, W i

t|t−1

}N

i=1
from p

(
Wt, Yt−1|Yobs

t−1
)
.

That is, draw wi
t|t−1 innovations fromN (0, I2) and obtain the associated Yi

t|t−1 from

f .

3. Evaluate the conditional density p
(

Yobs
t |wi

t|t−1, Yobs
t−1, Yi

t|t−1

)
using the measurement

equation and the distribution of measurement errors v. That is,

p
(

Yobs
t |wi

t|t−1, Yobs
t−1, Yi

t|t−1

)
= φ

(
Yobs

t − H′Yt|wi
t|t−1, Yobs

t−1, Yi
t|t−1

)
where φ is the (conditional) density of the multivariate standard normal distribu-

tion.

4. Evaluate the relative weights qi
t =

p
(

Yobs
t |wi

t|t−1,Yobs
t−1,Yi

t|t−1

)
∑N

j=1 p
(

Yobs
t |w

j
t|t−1,Yobs

t−1,Y j
t|t−1

) , normalized to be prob-

abilities.

5. Re-sample, with replacement, N values
{

Yi
t|t−1, W i

t|t−1

}N

i=1
from the sample we had

so far, now using the
{

qi
t
}N

i=1 as probabilities. These new values are the particles,

denoted
{

Yi
t , W i

t
}N

i=1.

6. Go back to step 2 for t+ 1, generate new innovations and use the new swarm of par-

ticles
{

Yi
t , W i

t
}N

i=1 to generate a new swarm of proposed particles
{

Yi
t+1|t, W i

t+1|t

}N

i=1
.

Then iterate until reaching the end of the sample t = T.

Thus we obtain a sequence of swarms of particles
{{

Yi
t , W i

t
}N

i=1

}T

t=0
, which represent em-

pirical conditional densities at every point in time for the state Y, which are implied by

the model, given the sequence of observables
{

Yobs
t
}T

t=0 from the data. In the main text, I

plot the sample averages of these empirical conditional densities at t = 0, ...T. This paper

is to my knowledge the first paper to apply nonlinear filtering to the perturbation-based

solution of a heterogeneous agents model with aggregate shocks. Computations are par-

17



allelized over the N dimension. It takes about 12 hours to run the case N = 20, 000, T = 44

using 28 cores.
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C Additional Model Results

C.1 Solution Accuracy

Table A1: Market clearing errors

Market Savings Good Labor

order 1 0.01% (0.03%) 0.04% (0.04%) 0.01% (0.01%)
order 2 0.00% (0.02%) 0.00% (0.00%) 0.00% (0.00%)

Notes: Market clearing errors for impulse response functions, average (main) and maximum values (in parentheses). Errors are
computed as percentage differences normalized by the steady state value of the variable or by the initial value of the series. They are
reported for the first-order (first row) and the second-order perturbations of the model (second row).

Figure A1: Effect of the volatility and persistence of borrowing constraints on equilibrium
risk-free rate

Notes: These two graphs show that the volatility and persistence of borrowing constraints in the calibration are well identified by
matching these same moments for the risk-free rate. They depict the persistence (left panel) and the volatility (in annual percentage
terms, right panel) of the risk-free rate as two-dimensional functions of the persistence and volatility of borrowing constraints. These
equilibrium values are estimated in a simulation of the model with T = 10, 000 periods. On each graph, the black dot represents the
baseline calibration. In both cases it lies in non-flat areas of the (ρ, σ) surfaces.
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C.2 Impulse Response Functions

Figure A2: Household responses to aggregate productivity shock

Notes: Nonlinear impulse response functions to a one standard deviation shock to aggregate productivity εz. Borrowing constraints
(upper left panel) are shown as a fraction of annual steady state output for low to high income households (resp. lowest to highest
line). The other five panels compare impulse response functions in the first-order (linear, in blue) and second-order perturbations
(nonlinear, in orange) of the model. Initial period: steady state. One period is a quarter, variables are annualized.
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Figure A3: Aggregate labor responses to borrowing constraint shocks

Notes: Nonlinear impulse response functions to a one standard deviation shock to borrowing constraints εφ, for aggregate employment
and the equilibrium wage. The two panels compare impulse response functions in the first-order (linear, in blue) and second-order
perturbations (nonlinear, in orange) of the model. Initial period: steady state. One period is a quarter, variables are annualized.
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C.3 Comparison with Post-Great Recession Data

Figure A4: Lending standards for consumer credit in survey data

Source: Senior Loan Officer Opinion Survey on Bank Lending Practices, Federal Reserve Board, January 2024. One period is a quarter.
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Figure A5: Aggregate productivity in the data

Source: Penn World Table 9.0. Aggregate productivity is measured as total factor productivity at constant national prices for the United
States. The shaded area represents the NBER-dated recession.
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