The Missing Home Buyers:
Regional Heterogeneity and Credit Contractions *

Pierre Mabille†

November 2020

Abstract

This paper demonstrates that the protracted decrease in young homeownership since the Great Recession was driven by high-house price regions, despite credit standards changing mostly nationally. Using a panel of U.S. metro areas, I calibrate a multi-region dynamic equilibrium model with overlapping generations of mobile households. Aggregate and regional dynamics are explained by the heterogeneous impacts of an aggregate credit contraction rather than by local shocks. Preexisting differences between regions and cohorts amplify differences in busts. The effect of subsidies to first-time buyers is dampened, because they fail to stimulate regions that suffer larger busts. Place-based subsidies achieve larger gains.

JEL classification: E21, E30, E60, G11, G21, G51, J11, R20, R50
Keywords: Regional business cycles, dynamic spatial equilibrium, credit conditions, mortgages, first-time buyers, home ownership, house prices, subsidies, Millennials.

*This paper is a revised version of Chapter 1 of my PhD dissertation at NYU. I am very grateful to Mark Gertler, Virgiliu Midrigan, Stijn Van Nieuwerburgh, and Stanley Zin for their guidance and support. I also thank Claudia Robles-Garcia (discussant), Bruno Biais, Adrien Bilal, Jarda Borovicka, Gian Luca Clementi, João Cocco, Vadim Elenev, Jack Faviukis, Andreas Fuster, Raquel Fernández, Elisa Giannone, Simon Gilchrist, Francisco Gomes, Arpit Gupta, Kyle Herkenhoff, Sasha Indarte, Kurt Mitman, Tarun Ramadorai, Andrea Tambalotti, Wilbert van der Klaauw, Venky Venkateswaran, Olivier Wang, and Mike Waugh for helpful comments. This paper benefited from seminar participants at NYU, the New York Fed, Notre Dame Mendoza, Columbia Business School, Chicago Booth, Northwestern Kellogg, Sciences Po, ESSEC, INSEAD, Paris School of Economics, Stockholm School of Economics, Johns Hopkins Carey, and HEC Paris, and from participants at the Junior VMACS Conference, the CEPR European Conference on Household Finance, and the Urban Economics Association Meeting. I thank the New York Fed and Recursion Co for their provision of data, and gratefully acknowledge financial support from the New York Fed PhD Dissertation Internship and the Macro-Financial Modeling Group of the Becker-Friedman Institute.

†INSEAD, Boulevard de Constance, 77300 Fontainebleau, France. Email: pierre.mabille@insead.edu. Website: https://www.pierremabille.com.
1 Introduction

Housing busts, like many recessions, affect demographic groups very differently. After the Great Recession, young home ownership fell deeply and persistently, leaving many Millennial buyers excluded from the housing market and leading to a large decline in total home ownership (Figure 1). This decrease, equivalent to 19 million “missing buyers” in the United States, has attracted widespread attention as it entails a potential shift in the historical importance of housing on households’ balance sheets.1

While existing work has focused on heightened exit from home ownership through foreclosures (Mian and Sufi (2009), Adelino, Schoar and Severino (2016), Kaplan, Mitman and Violante (2020)), less is known about its decrease through the lower entry of young buyers. Missing home buyers not only hampered the recovery of housing markets; they are also likely to shape their futures as Millennials grow old. This paper studies the causes of lower home ownership from young buyers since the Great Recession and its consequences for housing markets. I calibrate a new dynamic model of the cross-section of housing markets, to U.S. household-level and regional panel data. I focus on three questions: (i) How do changes in the environment (time effects) and between cohorts (cohort effects) account for the shift in home ownership, and how persistent are they? (ii) How do they affect the dynamics of housing markets at various horizons? (iii) What do they imply for stimulus policies targeting first-time buyers?

I find that the decrease in young home ownership can be traced back to persistent house price differences between regional housing markets, which amplified the nationwide tightening of credit conditions through regionally-binding borrowing constraints. Young buyers’ access to home ownership is largely determined by credit because of the upward-sloping life-cycle profile of income and wealth, especially when entering the economy in worse times. Because they are more constrained in areas with higher house prices, they postpone buying more when credit supply contracts, leading in turn to larger

1In 2005, the average home ownership rate of U.S. households was 68.8%. In 2015, it was 62.7% and there were 124.6 million households with on average 2.5 individuals per household, that is \((0.688 - 0.627) \times 124.6 \times 2.5 = 19\) million missing buyers. Even relative to 1995, there were 7.25 million missing buyers in 2005. As Goodman and Mayer (2018) show, this decrease is not explained by changes in the composition of the population and systematic variations across groups. Source: American Housing Survey.

Examples of resulting concerns include central banks, government agencies, think tanks, and banks. See e.g. “Coming of age in the Great Recession”, Federal Reserve Board speech by Gov. Brainard, 2015. Housing is the largest asset on households’ balance sheets and a key determinant of wealth accumulation (Kuhn, Schularick and Steins (2020)), it is used as a hedge against changes in rents and income (Sinai and Souleles (2005), Sodini, Van Nieuwerburgh, Vestman and von Lilienfeld-Toal (2017)), and entails individual and social benefits (DiPasquale and Glaeser (1999)), all of which have motivated numerous policies to stimulate home ownership.
price declines. Home buyer subsidies that are identical across regions have little stabilizing effect as they stimulate high-price regions, with larger busts, by less.

Figure 1: Change in home ownership by age group

I start by empirically motivating the importance of regional differences for the dynamics of young home ownership, by assembling a panel of U.S. metropolitan areas and documenting several new facts on first-time buyers. First, the decrease in young home ownership since the Great Recession was concentrated in high-price metro areas. There is a strongly increasing relationship between local house price levels in the 1990-2000s and the subsequent drop in young home ownership. Young home ownership fell by 25% in the top 10% of the house price distribution but by only 10% in the bottom 10%. This has led to a persistent increase in the dispersion of home ownership rates between MSAs. Second, entry into home ownership decreased persistently, especially in high-price MSAs. First-time mortgage originations in these regions fell by up to 55% compared to 25% in low-price MSAs, and remained low throughout the 2010s. Households delayed home ownership by 6 more years on average relative to low-price MSAs, leading to a temporary divergence in the ages of first-time buyers between regions. Third, these differences were not caused by a larger credit contraction in high-price MSAs. Instead, credit conditions, which are a major determinant of home ownership, changed uniformly nationwide. Loan-to-value (LTV), payment-to-income (PTI), and credit score requirements displayed strong comovements across regions.

To understand how regional differences affect households’ responses to changes in the economic environment, I develop a general equilibrium model of regional housing markets consistent with these facts. The economy is subject to local and aggregate shocks to income and credit supply. Regions differ in the amenity benefits that housing provides, construction costs, the price-elasticity of housing supply, and their exposures to nationwide income shocks. Each region is populated by overlapping generations of risk-averse
households who face idiosyncratic income and mortality risks. When born, households face different aggregate environments reflecting differences between cohorts. I focus on income differences between Millennials and other cohorts due to the scarring effect of entering the economy in the recession, and on wealth differences due to student debt. Households consume and save, sort across regions, choose to rent or own housing subject to borrowing constraints, and to repay or default if they have a mortgage.

The model accounts for three features from which regional business cycle models typically abstract: (i) the distribution of house prices responds endogenously to local and aggregate shocks; (ii) households are mobile across regions; (iii) overlapping cohorts have persistent differences.\(^2\) This setting allows, first, to disentangle the effects of local and aggregate shocks while accounting for local equilibrium responses, and for interactions between regions due to spatial sorting; second, to decompose the effects of time, age, and cohorts; third, to conduct robust counterfactual experiments and provide credible welfare estimates of housing policies.

I map the steady state and dynamic responses in the model to the panel of MSAs, and calibrate regional differences and mobility using indirect inference. I then use a series of counterfactual experiments to identify the causes and implications of the missing home buyers after the recession.\(^3\)

Along the transition path, an identical tightening of credit standards across regions (chosen to match the decrease in mortgage debt after the recession) generates heterogeneous housing busts. Local income shocks have little effect. The aggregate credit contraction fully explains the 10% decrease in young home ownership in low-price MSAs, and the 20% decrease in high-price MSAs, without targeting them. As in the data, the overall decrease in home ownership is driven by young buyers, and concentrated in high-price MSAs. Changes in Millennial preferences towards owning are not needed to explain this decrease, consistent with survey evidence. The impact of the credit contraction alone is temporary, but endogenously more persistent in high-price MSAs. Home ownership and prices remain low four years after the shock as households delay buying.

A decomposition of credit constraints over buyers’ life-cycles shows that there are more credit-constrained buyers in high-price MSAs. More of them are constrained by PTI than by LTV limits (75% versus 60%), except for the youngest buyers who have not saved

\(^2\)Existing models assume exogenous house prices, no mobility, and infinitely-lived households. This paper is the first to relax these assumptions. See e.g. the discussion of Guren, McKay, Nakamura and Steinsson (2020).

\(^3\)I develop a solution method to compute the transition dynamics of the house price distribution in this class of models, in response to unanticipated aggregate shocks to income and credit conditions.
enough for a down payment (almost 100% are LTV-constrained in low-price MSAs, where buyers are younger). This result, which nuances popular narratives, is due to endogenous spatial sorting. There are more productive households in high-price MSAs, who save more because of higher lifetime income, and buy at older ages because local prices are higher in the first place. However, sorting by income is limited because of moving costs and the option to rent, which allows households to enjoy better amenities without owning. Therefore, regional income differences are not high enough to compensate for house price differences, leading PTI constraints to bind more in high-price MSAs.

I study counterfactual responses to further characterize the time effect due to the credit contraction. The impact of regionally-binding constraints is time-varying: as the desirability of high-price regions increases in the 1990-2000s, local prices rise and make first-time buyers more sensitive to changes in credit conditions. Under the more equal house price distribution of 1995, the same credit contraction would have generated similar busts in young home ownership in high-price and low-price MSAs. In contrast, high-price MSAs see much larger busts under the baseline 2005 distribution. House prices fall by 10% and 20% in low- and high-price regions, replicating half of the difference in price changes in the data. Quantitatively, I estimate that these differences are explained in equal parts by tighter housing supply restrictions and better amenities in high-price MSAs, a novel result.

While the effect of temporary shocks on housing markets eventually vanishes, the effect of cohort differences is permanent. In the short run, student debt and the recession’s scarring effect on Millennial earnings double the drop in young home ownership. In the long run, they lower both home ownership rates (-2 pp and -6 pp) and house prices (-2% and -6%). Their effects on home ownership are three times larger in high-price MSAs, because they induce some credit-constrained Millennials to leave and to buy in low-price MSAs. In spatial equilibrium, they generate a “migration accelerator”, which stimulates low-price MSAs. These effects are absent from standard models and consistent with recent data.\(^4\) Cohort differences also generate a rental boom in high-price MSAs as non-moving Millennials delay buying and consume more rental housing. In turn, higher rents slow down wealth accumulation and further delay home ownership.

However, cohort differences have little impact on house price responses to shocks,\(^4\) for instance, many Millennials moved from high-price metro areas like San Francisco to the Austin, Denver, and Raleigh areas in the 2010s (Frey (2019)). This result helps explain the finding of Yagan (2019) that non-mortgage holders in hardest hit regions out-migrated more than mortgage holders. It also highlights that migrations respond to aggregate shocks in addition to local shocks, which cross-sectional empirical estimates do not capture.
highlighting a disconnect between their long-run and short-run effects. The decrease in prices without these differences would be nearly identical to that in the baseline model. This neutrality result is due to the endogenous response of the house price distribution. All else equal, worse life-cycle features make buyers’ purchase rates more elastic to shocks because of lower income and savings. However, they also lower prices in the first place, relaxing credit constraints and making purchase rates less elastic. Quantitatively, these two forces cancel out. This implies that policies aiming to stabilize house prices should not seek to improve persistent life-cycle features (e.g., reducing student debt), but rather provide temporary stimulus.

I conclude by evaluating the impact of housing subsidies to young buyers during the recession. I study (i) the First-Time Homebuyer Credit (FTHC), a tax incentive of $8,000 given uniformly to almost all new buyers in 2009; (ii) a budget-neutral place-based version of the FTHC where subsidies are proportional to local house prices. I validate my estimates by comparing the FTHC treatment effects on home ownership and prices along a counterfactual transition path to empirical estimates (Berger, Turner and Zwick (2019)). The FTHC generates a sizable increase in aggregate welfare equivalent to 1.5% of four years of non-durable consumption. Welfare gains during the transition come from four sources: home ownership allows buyers to live in larger units, enjoy higher utility benefits from owning, hedge against rent increases, and accumulate wealth when the rate of return on housing increases. The FTHC also slightly improves the recovery of non-durable consumption.

However, two factors dampen the effectiveness of the policy. First, a “one size fits all” subsidy relaxes credit constraints more in low-price MSAs with lower average house prices ($100,000) than in high-price MSAs ($240,000). Therefore it cushions half of the home ownership bust in the former but only one seventh in the latter. Since the decrease in home ownership is concentrated in high-price MSAs, the aggregate impact is limited. Second, my estimates of amenities imply that all else equal households get more utility from buying in high-price MSAs. While welfare gains are higher in those regions conditional on buying, the FTHC induces fewer renters to buy in high-price than in low-price MSAs, dampening the aggregate welfare effect. Due to these limitations, a place-based version of the FTHC improves the welfare gain by a third, without increasing the dollar cost of the policy. While real-world place-based policies, generally for labor markets, tend to favor low-income regions, my results suggest that housing stabilization policies should...
target high-price regions.

Related Literature This paper departs from existing settings by explicitly connecting two separate strands of the literature in a spatial macroeconomic framework: on the one hand, macroeconomic models with dynamic portfolio choices, which abstract from spatial variations; on the other hand, regional panel datasets, which have been consistently used for empirical identification but are silent on general equilibrium and welfare effects. My work contributes, first, to the literature on regional heterogeneity and aggregate shocks. I decompose the impacts of local and aggregate shocks, which existing work suggests are very different (Nakamura and Steinsson (2014), Jones, Midrigan and Philippon (2018), Beraja, Hurst and Ospina (2019b)), and find that aggregate credit conditions are a key determinant of local markets. Related to Beraja, Hurst and Vavra (2019a), but focusing on credit access rather than monetary policy, I find that more heterogeneous house price distributions amplify the effect of worse economic conditions, and dampen the effect of stimulus policies that are uniform across regions. My results on place-based subsidies complement Hurst, Keys, Seru and Vavra (2016), who find that redistributing resources to riskier regions by equating risk-adjusted mortgage rates stabilizes the economy in downturns. I depart from these papers by endogenizing the regional distribution of house prices, allowing for household mobility, and for differences between overlapping cohorts. In contrast to frictionless or perfectly segmented economies, I show that realistically accounting for spatial sorting is important for responses to shocks. Limited sorting by income (Kaplan and Schulhofer-Wohl (2017)) makes high-price regions more sensitive to a tightening of PTI requirements. My findings complement Lustig and Van Nieuwerburgh (2010), and they relate to Landvoigt, Piazzesi and Schneider (2015), in which buyers’ assignment into housing market segments in the San Diego region leads cheaper units to appreciate more during a credit boom. My setting critically differs from theirs by modeling households’ sorting between regions, which leads me to find that high-price regions are more volatile, not less. Far from being contradictory, these findings imply that real-world stabilization policies should focus on low-price units within high-price MSAs.

5There are several permanent first-time buyer programs in the U.S., which differ across regions. My results suggest that housing stabilization policies in downturns should also be place-based.

Second, as in Piskorski and Seru (2018), Auclert, Dobbie and Goldsmith-Pinkham (2019) and Guren and McQuade (2020), my analysis focuses on the housing bust and the post-Great Recession period. While these papers, and Kaplan et al. (2020) for the boom-bust cycle, focus on exit from home ownership through foreclosures and on debt relief policies, my paper focuses on Millennials’ lower entry rates and home buyer subsidies. I show that the FTHC, which Berger et al. (2019) study in an empirical setting, generate substantial welfare gains but that regional heterogeneity dampens its effectiveness. Favilukis, Mabille and Van Nieuwerburgh (2019) solve a spatial model for the New York MSA and study housing affordability policies, but they abstract from local and aggregate shocks.

Third, I contribute to the literature on young home buyers, whose importance was first emphasized by Mankiw and Weil (1989) for the Baby Boom cohort. Related to Ortalo-Magné and Rady (2006), Hurst (2017), and Wong (2019), I show that their behavior is especially elastic to aggregate shocks, and that they are a key driver of housing volatility. I complement a growing empirical literature (Goodman and Mayer (2018)), which separately studies the causes of the bust in Millennial home ownership. Instead, I jointly estimate their contributions in a structural model.7 Similar to Kaplan (2012) for the “Boomerang Generation”, I show that the distinct features of the Millennial cohort have important quantitative implications for housing markets. Unlike temporary shocks whose effect progressively vanishes, such cohort differences have permanent negative effects on home ownership and prices.

Outline The rest of the paper is organized as follows. Section 2 documents new facts on young buyers across U.S. metro areas. Section 3 presents the spatial macroeconomic model. Section 4 describes the calibration, which maps the model to the panel of metro areas from the empirical section. Section 5 studies the dynamic responses of local markets to an aggregate recession, and Section 6 how they are affected by differences between regions and cohorts. Section 7 studies implications for stimulus policies, and Section 8 concludes.

7I focus on borrowing constraints, student debt, and the recession’s scarring effect on Millennial earnings, three popular explanations for the bust (Acolin, Bricker, Calem and Wachter (2016), Bleemer, Brown, Lee, Strair and van der Klaauw (2017), Isen, Goodman and Yannelis (2019)). A separate literature on family dynamics studies the long-run trend in home ownership (e.g., Fisher and Gervais (2011)).
2 Evidence on Young Home Buyers Across Regions

This section documents stylized facts on young buyers and provides motivating evidence on the role of regional heterogeneity, which is quantified in the model. There is little evidence on young buyers’ access to credit and home ownership. One reason is that the distinction between borrower-level and loan-level datasets does not allow to identify the characteristics of loans taken by borrowers of a given age. To circumvent this limitation, I exploit data on first-time buyers, which are identified in both types of datasets.

2.1 Data Description

I assemble a regional panel dataset, in which I merge borrower-level and loan-level information on first-time buyers at the MSA level. In the next sections I use this panel to calibrate the steady state and dynamic responses in the model. First-time buyers account for 50% of all purchase mortgages originations (Consumer Credit Panel, Federal Reserve Bank of New York), thus they are quantitatively important for housing markets.

The panel tracks first-time mortgages in U.S. metro areas at annual frequency since the Great Recession, from 2005 to 2017. I merge information on mortgages, households’ demographics, and house prices at the MSA level, a close equivalent to a local labor market. Weighted averages are computed using local population sizes or loan sizes as weights. Nominal variables are expressed in 1999 dollars using the Bureau of Labor Statistics chained Consumer Price Index for all urban consumers.

Mortgage originations Data on first-time purchase mortgages comes from the Consumer Credit Panel (CCP) of the Federal Reserve Bank of New York. The CCP is a borrower-level, 5% random sample of the U.S. population with credit files derived from Equifax. I use information on the number and balances of mortgages originated by age and for all households, aggregated at the MSA level. The data has information on 370 of the 384 MSAs in the U.S. A first-time buyer is defined as the first appearance of an active mortgage since 1999 with no indication of any prior closed mortgages on the borrower’s credit report. First-time mortgage originations are large and volatile: 1.417 million loans were originated in 2005, 665,000 in 2011, and 1.059 million in 2017.

Mortgage applications Loan-level information on loan application and acceptance rates comes from the Home Mortgage Disclosure Act (HMDA). HMDA includes information
from U.S. financial institutions, including most insured depository institutions and non-bank lenders. In 2017, the last year of my sample, it covered 92% of all originations in the U.S, and its coverage is stable over time. I exclude mortgages which are not for purchase and owner-occupying purposes (e.g., refinance or second home mortgages). Application rates are calculated as the number of applications divided by total MSA population. Denial rates are calculated as the number of applications denied divided by the total number of applications.

Credit standards Information on the characteristics of first-time mortgages comes from the Single Family Loan-Level dataset of Freddie Mac and the Single Family Loan Performance dataset of Fannie Mae. The total stocks of loans are respectively 26.6 and 35 millions. I focus on the flow of new loans, in the loan origination and acquisition datasets. I use the distribution of LTV, DTI ratios, and borrower credit score at origination to measure changes in credit conditions across regions. Government-Sponsored Enterprises (GSE) and Federal Housing Administration (FHA) loans are the primary source of mortgage securitization for first-time buyers since the Great Recession. They represent 50% to 90% of first-time mortgage originations in the CCP data.8

Household demographics Demographic data comes from the American Community Survey (ACS) of the U.S. Census Bureau. I use household-level information by MSA on population, age structure, home ownership, migration flows, employment status and median income.

House prices I use the Zillow Home Value Index (ZHVI) and Rental Index (ZRI) for all homes at the MSA level, as measures of median house prices and rents.9 Since the data is monthly, I annualize it by taking the unweighted average across months in a given year. The ZHVI is available from 2005 to 2017. The ZRI is available after 2010; I extrapolate values from 2005 to 2010 by assuming that rents in each MSA grew at the same rate as the U.S. consumer price index for rents from the BLS (Rent of Primary Residence in U.S. City Average, All Urban Consumers).

8See Consumer Financial Protection Bureau (2020). FHA data does not have information on credit standards at origination.
9I checked that my results were unchanged with repeat-sale house price indexes, e.g., the All-Transactions House Price Index (U.S. Federal Housing Finance Agency) and the S&P CoreLogic Case-Shiller Home Price Index.
2.2 Classifying Regions

I classify metro areas by the level of local house prices in 2005, and keep this classification fixed throughout all sections of the paper. Regions in the bottom percentiles of the house price distribution are referred to as "low-price MSAs" (blue in graphs and tables) and regions in the top percentiles as "high-price MSAs" (red). Economywide aggregates are in black. I then study the evolution of local housing, mortgage, and labor markets within these groups. For most of the analysis, I split the sample into the simplest partition of metro areas: the bottom 50% and the top 50% of the house price distribution. My results do not depend on the date at which regions are sorted.¹⁰

Appendix Figure 16 plots these groups of regions on a map and Appendix Table 8 lists them. Low-price MSAs are concentrated inside the U.S. (e.g., Detroit MI, Indianapolis IN, Memphis TN). High-price MSAs are concentrated in coastal regions and the Southwest (e.g., Miami-Fort Lauderdale-Miami Beach FL, Phoenix-Mesa- Glendale AZ, San Francisco-Oakland-Fremont CA). The first group includes regions with historically stable house prices, unconstrained housing supply, and in low demand from buyers. The second group includes regions with historically higher volatility and tight housing supply restrictions, and regions with historically stable prices that experienced high volatility during the 2000s. All high-price regions are in high demand.

Appendix Figure 17 plots house price levels and changes by region group. Average house prices are $100,000 in low-price and $240,000 in high-price MSAs in 2005 (1999 dollars). They respectively fell by 10% and 45% from 2005 to 2012. High-price MSAs have a 50% larger population than low-price MSAs. Thus aggregate value- and population-weighted price indexes track high-price MSAs more closely. Households’ median and average incomes are 10% and 30% higher in high-price MSAs. Since house prices are more than twice higher, buyers’ debt-to-income and payment-to-income ratios are higher in high-price than in low-price MSAs, which makes them more sensitive to changes in credit standards. The model will replicate these features.

¹⁰I use 2005 for simplicity because many variables are not available at the regional level before that date. Results are unchanged if I sort regions using the 1997 house price distribution and then plot the evolution of those other variables after 2005. This means that the identities of low-price and high-price metro areas are constant over time, i.e. low- and high-price MSAs in 1997 are still low- and high-price MSAs in 2005.
2.3 Young Home Buyers since the Great Recession

The protracted decrease in home ownership after 2005 has attracted widespread attention (e.g., Garriga, Eubanks and Gete (2018)). Figure 1 shows that it is driven by young households (25-44 years old). Their average home ownership rate fell from 55% to 45% (10 pp or 18% decrease), while the home ownership rate of older households (45-85) only fell from 76% to 74% (2 pp or 3% decrease). Young households are the population group that is associated with the largest decrease in home ownership since 2005, as shown by a single sort of changes in conditional home ownership rates against traditional predictors of home ownership such as age, income, race, education, and household composition (Appendix A.4). I document significant regional heterogeneity in this decrease. There are large differences across regions in changes in home ownership, mortgage originations, buyers’ ages, and loan application rates.11

Young home ownership Figure 2 shows that the decrease in young home ownership is concentrated in high-price metro areas. Regions are sorted by percentiles of the house price distribution. There is a strongly increasing relationship between initial house price levels, and the subsequent drop in young home ownership. Young home ownership fell by more than 25% in the top 10% of the price distribution but by only 10% in the bottom 10%. There is no such relationship for older households, for which rates fell equally across regions, by less than 5% (Appendix Figure 19). The larger initial house price differences are, the larger the differences in busts are. This has led to a regional divergence in young home ownership (Appendix Figure 23). From 2005 to 2008, home ownership rates followed parallel trends in low-price (60%) and high-price metro areas (55%). After 2008, they persistently diverge.

After documenting this relationship, I focus on the simplest partition of metro areas in the panel dataset, between the top 50% and the bottom 50% of the house price distribution. This classification provides a lower bound on the changes that I document, and it is the simplest setting to calibrate the model in the next sections.

Mortgage originations Figure 3 shows that the flow of mortgage originations to first-time buyers has decreased more in high-price MSAs (-55%) than in low-price MSAs (-25%) since 2005, consistent with regional heterogeneity in home ownership busts. Originations temporarily increased in both regions in 2008-2009, when the First-Time Home

11Appendix A.6 shows the levels of these variables. The model will target both levels and changes.
Buyer Credit (FTHC) was implemented to stimulate housing markets. Originations stabilized in low-price MSAs, but they decreased further in high-price MSAs. They have not yet fully recovered in 2017, and remain lower in high-price MSAs (-25%) than in low-price MSAs (-10%). In Section 7, I use the model to explain why the FTHC stabilized low-price regions better than high-price regions, and how its effectiveness could be improved.

Age of first-time buyers Figure 4 shows an increase in the average age of first-time buyers in high-price MSAs, suggesting that many buyers delayed home ownership in less affordable regions. After the recession and the implementation of the FTHC, the average age of first-time buyers fell by 4 years in low-price regions (from 39 years old), but increased by 2 years in high-price regions (from 40 years old) relative to the economy-wide average. This led to sixfold increase in their difference compared to 2005. This increase is temporary, and the age of first-time buyers remains only slightly higher in high-price regions after 2012. This result, together with lower originations in high-price regions, suggests that households’ propensity to purchase homes varies both over time (e.g., Berger and Vavra (2015)) and spatially.
Credit standards Mortgage credit determines access to home ownership for first-time buyers because they have little financial and housing wealth (Ortalo-Magné and Rady (2006)), and it has been a major determinant of the home ownership boom in the 2000s (Acolin et al. (2016), Kaplan et al. (2020)). Does a larger local credit contraction explain the larger decrease in home ownership, mortgage originations, and loan applications in high-price MSAs? Figure 5 shows that this is not the case. It plots changes in credit conditions
by metro area, measured by maximum LTV, PTI ratios, and credit scores at origination. All of them display strong comovements across regions, such that credit standards have become uniformly tighter across metro areas over the period. The tightening of PTI ratios (-15%) is the largest and most persistent (they are still tighter in 2017 than in 2005). The increase in minimum credit scores (+5%) is also persistent. The tightening of LTV ratios was smaller (-6%) and shorter-lived (they have recovered by 2013).12

In contrast, local income contracted by less than credit standards across regions, and it contracted by more in high-price MSAs. Appendix Figure 22 shows that annual total payroll fell on average by 5% in high-price MSAs (0.1% in low-price MSAs), median income by 4% (2%), and the number of employees by 6% (3%).

Figure 5: Change in credit conditions by region group

Notes: Left panel: average change in top percentile (P75) of the credit score distribution of first-time buyers at mortgage origination. Middle panel: average change in top percentile (P75) of the payment to income distribution of first-time buyers at mortgage origination. Right panel: average change in top percentile (P75) of the loan to value distribution of first-time buyers at mortgage origination. Blue low-price MSAs. Red: high-price MSAs. Black: economy average. Population-weighted averages. Variables normalized to 100 in 2005. Gray bands indicate NBER recessions. Source: Fannie Mae, Freddie Mac, Zillow.

Mortgage applications Appendix Figure 20 shows evidence on the sources of lower originations to first-time buyers. They have largely been driven by a decrease in loan originations to first-time buyers. They have largely been driven by a decrease in loan

12Another possible explanation for the drop in young home ownership is a change in the composition of new mortgages, with the collapse of the private-label market (Justiniano, Primiceri and Tambalotti (2017)). This is unlikely to be the case. Using CCP data, I calculate that agency loans (GSE and FHA) represent a larger share of first-time mortgage originations in 2000-17, between 50% and 90%. Mian and Sufi (2019) also report that almost all of the variations in transactions in areas relying on private mortgage was driven by speculators and not by young buyers. Finally, the composition of new mortgages is not a concern for my main quantitative analysis, as changes credit standards in the model are calibrated to generate the same decrease in household leverage as in the data.
application rates, rather than an increase in rejection rates. The decrease in application rates is persistent, and larger in high-price MSAs, where application rates are 75% lower in 2017 than in 2005, compared to 40% lower in low-price MSAs. In contrast, acceptance rates only fell by 10% in 2006-2007. This decrease is quantitatively important, as it is of the same order of magnitude (tenfold) and more persistent that the increase in foreclosure rates during the same period (Appendix Figure 21).

2.4 Regionally-Binding Credit Constraints

Before turning to the model, I illustrate how regionally-binding credit constraints account for the features of the data highlighted in this section: the symmetric tightening of credit constraints, the larger exposure of high-price regions to the business cycle, and heterogeneous housing busts across regions. Credit constraints bind differently across regions because of preexisting differences in house price levels. Since constraints bind more in high-price regions, young buyers are more sensitive to the same tightening of credit standards. Their home ownership rate falls more in high-price regions, leading to larger house price busts.

Consider a stylized mortgage contract. Denote the mortgage rate as \(r^b \), the loan maturity as \(n \), and LTV and PTI requirements by \(\theta_{LTV} \) and \(\theta_{PTI} \). Inverting the mortgage payment formula implies that the maximum loan size due to the PTI constraint is

\[
\text{PTI max loan size} = \frac{1 - (1 + r^b)^{-n}}{r^b} \theta_{PTI} Y \text{ max. payment per period} \tag{1}
\]

By definition, the maximum LTV loan size is \(\theta_{LTV} \times \text{price} \). Therefore the maximum house price that households can afford is

\[
\text{max. affordable price} \bar{P} = \min \left[\frac{1 - (1 + r^b)^{-n}}{r^b} \theta_{PTI} Y + \text{down} \frac{\text{down}}{1 - \theta_{LTV}} \right] \tag{2}
\]

Figure 6 plots the maximum affordable price and the actual house price for each set of metro areas, feeding in values for the empirical counterparts of the variables in Equation 2. \(n = 30 \) years is the average mortgage maturity in the U.S., \(r^b = 6.4\% \) is the average annual rate on 30-year fixed rate mortgages at the beginning of the sample (Primary Mortgage Market Survey, Freddie Mac), \(\{Y_{j,t}\} \) is a time series of median household income (ACS), \(\{\theta_{PTI,j,t}\} \) and \(\{\theta_{LTV,j,t}\} \) are time series for PTI and LTV ratios (Single Loan
Level Datasets, Fannie Mae and Freddie Mac, 90th percentiles), down = $12,000 is the median down payment in 2005 (Residential Property Loan Origination Report, ATTOM Data Solutions). \(j \) denotes low- and high-price MSAs. Nominal variables are in 1999 dollars.\(^{13}\)

There are three takeaways. First, maximum affordable prices \(\bar{P} \) (dashed lines) are higher in high-price regions than in low-price regions, because average household income and wealth are higher. Second, actual median house prices \(P \) (solid lines) are much closer to \(\bar{P} \) in high-price regions, showing that credit constraints are binding. In contrast, \(P \) is well below \(\bar{P} \) in low-price regions, where constraints are slack. Third, there is a strong covariance between \(P \) and \(\bar{P} \), especially in high-price regions where constraints are binding. Thus changes in equilibrium prices are associated with changes in credit standards and local income. Lastly, changes in the maximum affordable price \(\bar{P} \) are due to the PTI limit rather than to the LTV limit in all years, except 2008 in high-price regions. Thus in these calculations, constraints bind \((P \geq \bar{P})\) because of the PTI limit for 5 years out of 6.

Figure 6: Regional credit constraints: numerical example

![Figure 6: Regional credit constraints: numerical example](image)

Notes: Left panel: actual price \(P \) (solid line) and maximum affordable price \(\bar{P} \) (dashed line) in low-price MSAs (blue). Right panel: actual price \(P \) (solid line) and maximum affordable price \(\bar{P} \) (dashed line) in high-price MSAs (red). \(\bar{P} \) is calculated using Equation 2 and time series from the data described in the main text. Gray bands indicate NBER recessions. House prices are in 1999 dollars.

Discussion The role of young buyers and their credit constraints are key facts documented in this section that are missing from existing explanations for housing market volatility in the cross-section of regions. First, explanations based on increases in household leverage and the subsequent waves of defaults focus on increased exit from home

\(^{13}\)The annual 30-year fixed mortgage rate decreased from 2005 to 2017, with an average of 4.8% and a minimum of 3.7%. This partly relaxes credit constraints, but does not change the main results.
ownership from existing owners (e.g., Mian and Sufi (2009)), but abstract from lower entry from new buyers. Without persistently lower entry, temporarily high foreclosure rates would only have a smaller and short-lived impact on home ownership, at odds with the data. Second, explanations based on tighter housing supply restrictions in high-price regions, but abstracting from borrowing constraints (e.g., Glaeser and Gyourko (2005)), can account for price volatility in constrained but not in unconstrained regions. Borrowing constraints imply that when there are regional differences in house price levels due to fundamentals (e.g., housing supply, labor markets, amenities), high-price region buyers are more elastic to credit shocks and busts are larger, regardless of housing supply.\footnote{Nathanson and Zwick (2018) have proposed a separate explanation based on speculation. Regional credit constraints provide a unified theory of volatility on both elastic and inelastic markets.}

The rest of the paper develops a structural model that accounts for these facts and for salient features of housing markets from which the numerical example abstracts. Heterogeneity in households’ incomes and savings, especially over households’ life-cycles, implies that credit constraints bind more for younger households and less for older ones than for the median household. The option to rent instead of owning, and to migrate from a high-price to a low-price region, may dampen the effect of credit constraints. Lastly, both local and aggregate shocks may affect housing markets.

3 An Equilibrium Model of Regional Housing Markets

This section presents a model of the cross-section of housing markets with heterogeneous agents and incomplete markets. The model has three key features: (i) The dynamics of the regional distribution of house prices and rents is endogenous and responds to local and aggregate shocks. (ii) Individual households sort between regions. (iii) Overlapping cohorts of households have different initial characteristics. Solving such a model is numerically challenging. I develop a tractable solution method to calibrate this class of models and solve for the transition dynamics in response to unanticipated shocks.

3.1 Environment

The economy consists of two building blocks. First, two sets of regions corresponding to low-price and high-price metro areas in the data \((j = L, H)\) are connected by migrations. Regions differ in their amenity benefits from housing, construction cost, price elasticities
of housing supply, exposures to aggregate income shocks. Second, each set of regions con-
sists of a Bewley-Huggett-Aiyagari incomplete markets, heterogeneous agents economy.
The economy is populated by overlapping generations of households with a life-cycle.
Population size is stationary, and there is a continuum of measure 1 of households. Time
is discrete.

Preferences Households have time- and state-separable preferences. They have a con-
stant relative risk aversion (CRRA) utility function, over a constant elasticity of substitu-
tion (CES) aggregator of nondurable consumption \(c_t \) and housing services \(h_t \). Amenity
benefits are modeled as additive utility shifters \(\Xi \). A household’s instantaneous utility
function in region \(j \) is

\[
\frac{u(c_t, h_t)^{1-\gamma}}{1-\gamma} + \Xi^H_j \equiv \left[((1-\alpha)c_t^\epsilon + \alpha h_t^\epsilon)^{1-\gamma} \right] + \Xi^H_j
\]

(3)

The taste shifter \(\Xi^H_j \) depends on region \(j = L, H \) and on home ownership status \(H = o, r \). It captures the amenity benefits accruing with different locations and with owning. Renters in region \(j \) enjoy benefits \(\Xi^r_j = \xi^r_j \), with the normalization \(\xi^r_L = 0 \). Homeowners enjoy higher benefits \(\Xi^o_j = \xi^r_j + \xi^o_j \). They only own one home in a single size, which delivers a fixed flow of services \(h \). Renters consume continuous quantities of housing services \(h_t \in (0, h] \).

Bequests are accidental and not chosen by households. They are a normal good and
are redistributed equally. They are captured by a warm-glow motive:

\[
U(b) \equiv \psi \frac{b^{1-\gamma}}{1-\gamma}
\]

(4)

Endowments and risk Households face idiosyncratic income risk and mortality risk.
The survival probabilities \(\{ p_a \} \) vary over the life-cycle. The law of motion for the log
income of a working-age household \(i \), of age \(a \), in region \(j \) is

\[
y_{i,j,a,t} = g_a + e_{i,t} + \beta_j \eta_{IS,t} \\
e_{i,t} = \rho e_{i,t-1} + \epsilon_{i,t} \\
\epsilon \iid \mathcal{N} \left(\mu_\epsilon, \sigma_\epsilon^2 \right)
\]

(5)
\(g_a \) is the logarithm of the deterministic life-cycle income profile. \(e_{i,t} \) is the logarithm of the persistent idiosyncratic component of income for household \(i \). \(\eta_{US,t} \) is the aggregate component of regional income shocks, which are zero in steady state. \(\beta_j \) is the sensitivity of income in region \(j \) to aggregate income \(\eta_{US,t} \).

The income process \(Y_{i,j,a,t} = \exp(y_{i,j,a,t}) \) is supermodular in regional and individual income. The cross-derivatives

\[
\frac{\partial^2 Y_{i,j,a,t}}{\partial (\beta_j \eta_{US,t}) \partial g_a}, \frac{\partial^2 Y_{i,j,a,t}}{\partial (\beta_j \eta_{US,t}) \partial e_{i,j,t}} > 0
\]

create a complementarity between the regional component, and the life-cycle and stochastic components of individual income. It creates a motive for higher income households to live in regions with higher average income (if \(\eta_{US,t} \neq 0 \)).

Household balance sheets Markets are incomplete, as households only have access to housing and a one-period risk-free bond with an exogenous rate of return \(r > 0 \).

Inactive renters who do not buy a home face a no-borrowing constraint. Renters who buy can use long-term mortgages to borrow, subject to LTV and PTI constraints, which only apply at origination. They face an exogenous, kinked interest rate schedule, which makes borrowing more costly, and comes from an unmodeled fixed financial intermediation wedge: \(\bar{r}_t = r^b > r \) if \(b_t < 0 \), otherwise \(\bar{r}_t = r \). Because \(r^b > r \), indebted households never simultaneously hold risk-free assets and debt, and pay off their mortgages first.

To account for the exit margin from home ownership, mortgages are defaultable and non-recourse. Upon default, houses used as collateral return to the market as part of supply. Defaulters incur a utility penalty \(d \), are forced to rent in the same region, and can buy a new home with probability 1 in the next period, which corresponds to four years. Owners cannot refinance and extract housing equity.

Cohort differences All households enter the economy as renters. They are divided into two types, Millennials and non-Millennials. Non-Millennials enter the economy prior to 2005, they draw a level of initial wealth equal to the average bequest, and their initial income from the stationary distribution. Millennials enter after 2005 and have two dis-

15 The assumption of identical processes across regions for \(e_{i,t} \) can be easily relaxed.
16 The assumption that indebted owners cannot save accounts for the large fraction of “wealthy hand-to-mouth” households with little liquid assets in the data (Kaplan and Violante (2014)).
17 This assumptions can be relaxed, but it is not crucial for the dynamics of home ownership.
tinct features. First, their wealth is lower by a fixed amount corresponding to student
debt payments in the first periods of their lives (from their twenties to their early thirties).
Second, they have persistently lower incomes due to the scarring effect of entering the
labor market during a recession. They draw their initial income from a distribution that
is first-order stochastically dominated by the distribution for non-Millennials.

Taxes and transfers Labor income is subject to a progressive tax and transfer schedule
as in Heathcote, Storesletten and Violante (2017),

\[T(Y) = Y - \varphi Y^{1-\tau}, \]

where \(\tau \) and \(\varphi \) respectively control the progressivity and level of taxes.

Retirement income has the main features of the U.S. pension system as in Guvenen
and Smith (2014) (see the pension schedule in Appendix Section B.1).

Household choices Every period, households choose to either rent or own. The rental
and owner-occupied housing markets give access to different housing sizes. Owner-
occupied units come in a single size \(\bar{h} \) at price \(P_j \) in region \(j \), and rental size can be chosen
continuously in \((0, \bar{h}] \) at rent \(R_j \). Households choose whether to move between metro
areas. If they do, they incur additive fixed moving costs \(m \) in terms of utility. Finally, they
choose nondurable consumption \(c_t \), and save in a one-period risk-free bonds or borrow
with a long-term mortgage \(b_t \). They inelastically supply one unit of labor to the local labor
market.

Housing supply The housing stock \(H_{j,t} \) in region \(j \), in square feet, depreciates at rate \(\delta \):

\[H_{j,t} = (1 - \delta) H_{j,t-1} + I_{j,t} \]

Residential investment \(I_{j,t} \) compensates for depreciation. At the household level, owners
pay a maintenance cost in dollars at the beginning of each period, \(\delta P_j \bar{h} \).

The construction sectors in the two regions supplies housing according to a reduced-
form upward-sloping schedule,

\[I_{j,t} = \bar{I}_j P_{j,t}^{\rho_j} \]

The construction cost \(1/\bar{I}_j \) and the price elasticity of housing supply \(\rho_j \) differ between
regions. The lower \(\bar{I}_j \), the higher the price level required to induce a given level of res-
idential investment. The lower ρ_j, the larger the price movements required to induce a given change in residential investment in percentage terms. Since households supply labor inelastically, the construction sectors are only affected by price changes.\(^\text{18}\)

Finally, markets for owner-occupied housing and for rentals are segmented. Every period, the housing stock $H_{i,j}$ (in square feet) is divided into a fraction $ho_{i,j}^{sq ft}$ of owner-occupied units and a fraction $1 - ho_{i,j}^{sq ft}$ of rentals.\(^\text{19}\) The supply of owner-occupied houses and of rentals (in square feet) are respectively equal to

$$H_{i,j,t}^o = ho_{i,j}^{sq ft} H_{i,j,t} \quad \text{and} \quad H_{i,j,t}^r = \left(1 - ho_{i,j}^{sq ft}\right) H_{i,j,t} \quad (10)$$

When default rates are positive, housing supply is higher by an amount equal to the measure of foreclosed houses going back to the market multiplied by their square footage.

Timing A household in a given region makes discrete home ownership and location choices, then earns labor and financial income in its region of origin, makes consumption, savings or debt, and housing choices.

3.2 Household Problem

This section describes the household problem in recursive form. The individual state variables are its tenure status $\mathcal{H} = r, o$ (renter or owner), location $j = L, H$ (low-price or high-price region), age a, assets or debt b, and endowment y. I only describe the renter and the owner problems for low-price regions L, since the problem is similar for high-price regions H.

3.2.1 Renter

Denote the date t value function of a renter of age a, with savings b_t and income y_t, who starts the period in region L, as $V_{t}^{rL}(a, b_t, y_t)$. First, a renter chooses the location where it will move at the end of the period, and whether to rent or own in this new location. The envelope value of the value functions for each option is:

$$V_{t}^{rL}(a, b_t, y_t) = \max \left\{ V_{t}^{rL,rL}, V_{t}^{rL,LH}, V_{t}^{oL,oL}, V_{t}^{rL,oL} \right\} \quad (11)$$

\(^\text{18}\)It is straightforward to allow for time-varying region-specific shifters $\bar{I}_{j,t}$, to capture regional sensitivities to the cycle in addition to those already induced by prices.

\(^\text{19}\)Appendix B.2 discusses the assumption of no conversion between rentals and owner-occupied units.
Denote $d^{rL}_t \in \{rL, rH, oL, oH\}$ the resulting policy function for the discrete choice problem. Then, renters choose nondurable consumption, housing services, and savings or mortgage debt if they borrow to purchase a house.

Inactive renter The value of being inactive and staying a renter in region L is given by the Bellman equation

$$V^{rL,rL}_t(a, b_t, y_t) = \max_{c_t, h_t, b_{t+1}} \frac{u(c_t, h_t)^{1-\gamma}}{1-\gamma} + \Xi^{rL}_t + \beta \left(p_d \mathbb{E}_t \left[V^{rL}_{t+1}(a+1, b_{t+1}, y_{t+1}) \right] + (1-p_d)U_{t+1} \right),$$

subject to the constraint that expenses on nondurable consumption, rented housing services, and savings, must be no lower, and at the optimum equal to, resources from labor income net of taxes and transfers, and financial income from risk-free assets

$$c_t + R_{L,i} h_t + b_{t+1} = y_t - T(y_t) + (1+r)b_t,$$

and subject to a no-borrowing constraint on assets, as well as a constraint on the size of rental housing

$$b_{t+1} \geq 0, \ h_t \in (0, \bar{h}).$$

Expectations are taken with respect to the conditional distribution of idiosyncratic income at date t. Since the household does not own a house, the warm-glow bequest motive is over financial wealth, $U_{t+1} = \frac{\psi b_{t+1}^{1-\gamma}}{1-\gamma}$.

Mobile renter When moving to region H and staying a renter, a household incurs a moving cost m in utility terms and faces the continuation value function in region H:

$$V^{rL,rH}_t(a, b_t, y_t) = \max_{c_t, h_t, b_{t+1}} \frac{u(c_t, h_t)^{1-\gamma}}{1-\gamma} + \Xi^{rH}_t - m + \beta \left(p_d \mathbb{E}_t \left[V^{rH}_{t+1}(a+1, b_{t+1}, y_{t+1}) \right] + (1-p_d)U_{t+1} \right),$$

s.t. $c_t + R_{L,i} h_t + b_{t+1} = y_t - T(y_t) + (1+r)b_t$

$$b_{t+1} \geq 0, \ h_t \in (0, \bar{h})$$

(15)
Home buyer When buying a house in the same region, the renter’s value function is

\[V^r_{t+1}(a, h_t, b_t, y_t) = \max_{c_t, h_{t+1}, b_{t+1}} \frac{u(c_t, h_t) 1 - \gamma}{1 - \gamma} + \Xi^{r'}_L + \beta \left(p_a \mathbb{E}_t \left[V^o_{t+1}(a + 1, b_{t+1}, y_{t+1}) \right] + (1 - p_a) U_{t+1} \right). \] (16)

In addition to rental services purchased at rate \(R_{L,t} \), the household buys owner-occupied housing at price \(P_{L,t} \),

\[c_t + R_{L,t} h_t + F_m + P_{L,t} \bar{h}(1 + f_m) + b_{t+1} = y_t - T(y_t) + (1 + r) b_t, \quad h_t \in (0, \bar{h}], \] (17)

using a mix of savings accumulated over the life-cycle, and of long-term mortgage debt \(b_{t+1} \) borrowed at rate \(r^b \), subject to fixed and proportional origination fees \(F_m \) and \(f_m \), and to LTV and PTI constraints,

\[b_{t+1} \geq -\theta_{LTV,t} P_{L,t} \bar{h} \quad \text{and} \quad b_{t+1} \geq -\frac{\theta_{PTI,t}}{(1 + r^b - \tilde{\theta})} y_t. \] (18)

\(\theta_{LTV} \) is the maximum fraction of the house price in region \(L \) which the household can borrow, so \(1 - \theta_{LTV} \) is the down payment requirement. \(\theta_{PTI} \) is the maximum fraction of its income that a household is allowed to spend on mortgage payments each period. These constraints only apply at origination, and may be violated in subsequent periods in response to income shocks and house price movements. Every period, homeowners with a mortgage pay interests and roll over their current debt subject to the requirement that they repay a fraction \(1 - \tilde{\theta} \) of the principal,

\[b_{t+1} \geq \min \left[\tilde{\theta} b_t, 0 \right]. \] (19)

The lowest payment that households can make in a period therefore equals \((1 + r^b - \tilde{\theta}) b_t \). The LTV constraint directly restricts the maximum mortgage balance of a buyer. By imposing a limit on the mortgage payment, the PTI constraint limits the maximum mortgage balance \(b_t \) of a buyer given its current income. Together, they restrict the maximum prices for owner-occupied units that buyers can afford. If house prices differ between regions, buyers’ location choices may be constrained by mortgage credit, and credit movements will have larger effects on buyers’ choices in regions where these constraints are more binding. As a result, regional credit constraints will affect macroeconomic dynamics.

The household’s bequest motive now includes housing wealth,

\[U_{t+1} = \psi((1 + r^b) b_{t+1} + P_{L_t} \bar{h})^{1 - \gamma}. \]
Mobile home buyer The value of moving to region H and buying a house is similar, with the addition of the moving cost m:

$$V_{t}^{rL,oH}(a, b_t, y_t) = \max_{c_t, h_t, b_{t+1}} \frac{u \left(c_t, h_t \right)^{1-\gamma}}{1 - \gamma} + \Xi_t - m + \beta \left(p_a \mathbb{E}_t \left[V_{t+1}^{oH}(a + 1, b_{t+1}, y_{t+1}) \right] \right) + \left(1 - p_a \right) U_{t+1},$$

subject to the budget and borrowing constraints

$$c_t + R_{L,t} h_t + F_m + P_{H,t} \bar{h}(1 + f_m) + b_{t+1} = y_t - T(y_t) + (1 + r)b_t, \quad h_t \in \left(0, \bar{h} \right],$$

$$b_{t+1} \geq -\theta_{LT,V,t} P_{H,t} \bar{h} \quad \text{and} \quad b_{t+1} \geq -\frac{\theta_{PT,L}}{1 + \hat{r} - \theta} y_t.$$

(21)

3.2.2 Home Owner

The home owner problem shares the same structure. Denote the date t value function of an owner starting the period in region L, as $V^{oL}(a, b_t, y_t)$. It chooses to either remain an owner, or sell its house and become a renter, or default, and the region where it moves over the period:

$$V_{t}^{oL}(a, b_t, y_t) = \max \left\{ V_{t}^{oL,oL}, V_{t}^{oL,oH}, V_{t}^{oL,rL}, V_{t}^{oL,rH}, V_{t}^{oL,d} \right\}$$

(22)

Denote the resulting policy function for the discrete choice problem as $d_{t}^{oL} \in \{ oL, oH, rL, rH, d \}$.

Inactive owner The value of staying a home owner in region L is given by the Bellman equation with fixed housing services \bar{h},

$$V_{t}^{oL,oL}(a, b_t, y_t) = \max_{c_t, b_{t+1}} \frac{u \left(c_t, \bar{h} \right)^{1-\gamma}}{1 - \gamma} + \Xi_t + \beta \left(p_a \mathbb{E}_t \left[V_{t+1}^{oL}(a + 1, b_{t+1}, y_{t+1}) \right] \right) + \left(1 - p_a \right) U_{t+1},$$

subject to a budget constraint including a proportional maintenance cost $\delta P_{L,t} \bar{h}$,

$$c_t + b_{t+1} + \delta P_{L,t} \bar{h} = y_t - T(y_t) + (1 + \hat{r})b_t,$$

and the loan amortization constraint described earlier,

$$b_{t+1} \geq \min \left[\tilde{\theta} b_t, 0 \right].$$

(25)
If the household has mortgage debt, the interest rate is $\bar{r} = r^b$, otherwise the interest rate on risk-free assets is $\bar{r} = r$. The bequest motive includes housing wealth in the same region, $U_{t+1} = \frac{\psi((1+r^b)b_{t+1}+P_{L,t}\bar{h})^{1-\gamma}}{1-\gamma}$.

Mobile owner When selling its house and purchasing a house in the other region H, an owner incurs the moving cost m:

$$V_{t}^{oL,oH}(a,b_t,y_t) = \max_{c_t,b_{t+1}} \frac{u(c_t,\bar{h})}{1-\gamma} + \Xi_L - m + \beta \left(p_a \mathbb{E}_t \left[V_{t+1}^{oH}(a+1,b_{t+1},y_{t+1})\right] + (1-p_a)U_{t+1}\right)$$

(26)

The new house is purchased with a mix of housing equity, savings in risk-free bonds (if it holds no debt), and a new mortgage b_{t+1}, subject to the same origination fees and borrowing constraints as a renter. In addition, there are sales transaction costs f_s and maintenance costs $\delta P_{L,t}\bar{h}$ on the house sold in region L,

$$c_t + F_m + P_{H,t}\bar{h}(1+f_m) + b_{t+1} = y_t - T(y_t) + (1+\bar{r})b_t + (1-f_s-\delta)P_{L,t}\bar{h},$$

$$b_{t+1} \geq -\theta_{LTV,t}P_{H,t}\bar{h} \quad \text{and} \quad b_{t+1} \geq -\frac{\theta_{PT,t}}{1+r^\theta-\bar{r}}y_t.$$

(27)

Home seller An owner selling its house and becoming a renter in the same region incurs the proportional selling transaction cost f_s and the maintenance cost $\delta P_{L,t}\bar{h}$:

$$V_{t}^{oL,oL}(a,b_t,y_t) = \max_{c_t,b_{t+1}} \frac{u(c_t,\bar{h})}{1-\gamma} + \Xi_L + \beta \left(p_a \mathbb{E}_t \left[V_{t+1}^{oL}(a+1,b_{t+1},y_{t+1})\right] + (1-p_a)U_{t+1}\right),$$

subject to the budget and no-borrowing constraints

$$c_t + b_{t+1} = y_t - T(y_t) + (1+\bar{r})b_t + (1-f_s-\delta)P_{t,L}\bar{h},$$

$$b_{t+1} \geq 0$$

(28)

(29)

Because the owner sells its house during the period, the bequest only includes financial wealth, $U_{t+1} = \frac{\psi((1+r^b)b_{t+1})^{1-\gamma}}{1-\gamma}$.

Mobile home seller The value of selling its house to move and become a renter in the other region H is identical the previous one, with the addition of the moving cost m.

25
Defaulting owner. A defaulter does not repay its mortgage, incurs a utility penalty \(d\) and becomes a renter in the same region in the next period:

\[
V_t^{oL,d}(a, b_t, y_t) = \max_{c_t, b_{t+1}} \frac{u(c_t, h_t)^{1-\gamma}}{1-\gamma} + \Pi^0_L - d + \beta \left(p_a \mathbb{E}_t \left[V_{t+1}^{rL}(a + 1, b_{t+1}, y_{t+1}) \right] + (1 - p_a)U_{t+1} \right),
\]

subject to the budget and no-borrowing constraints

\[
c_t + b_{t+1} = y_t - T(y_t), \quad b_{t+1} \geq 0
\]

Because the owner loses its house during the period, the bequest only includes financial wealth, \(U_{t+1} = \frac{\psi((1+r)b_{t+1})^{1-\gamma}}{1-\gamma} \).

3.3 Equilibrium

This section defines a dynamic spatial recursive competitive equilibrium, which describes how the economy in steady state responds to unanticipated local and aggregate shocks.

Definition Given exogenous time paths for aggregate shocks to income and credit standards \(\{\eta_{US,t}, \theta_{LTV,t}, \theta_{PTI,t}\}\), an equilibrium consists of the following, for region \(j = L, H\) and home ownership \(\mathcal{H} = r, o\):

(i) sequences of prices \(\{P_{j,t}, R_{j,t}\}\),

(ii) value functions \(\{V_{j,H}^t, V_{j,H}^{t}\}\),

(iii) policy functions \(\{d_{j,H}^{t}, c_{j,H}^{t}, h_{j,H}^{t}, b_{j+1}^{t}\}\),

(iv) a law of motion for the cross-sectional distribution of households \(\lambda_t(j, \mathcal{H}, a, b, y)\) across regions, ownership statuses, and idiosyncratic states,

such that households optimize given prices, the law of motion for the distribution of households’ is consistent with their choices and with prices, and markets clear (below).

Housing market clearing There are four market-clearing conditions. The market-clearing conditions for owner-occupied housing in regions $j = L, H$ are

$$
\int_{\Omega^o_{j,t}} h d\lambda_t = \frac{\text{pop}_{j,t} \times h_{o,ht} \times \bar{h}}{\text{owner-occupied housing demand in } j} = \frac{h_{o,sqft} \times H_{j,t}}{\text{owner-occupied housing supply in } j}
$$

(32)

The market-clearing conditions for rentals in regions $j = L, H$ are

$$
\int_{\Omega^r_{j,t}} h_{j,t} d\lambda_t = \frac{(1 - h_{o,sqft}) \times H_{j,t}}{\text{rental demand in } j} = \frac{h_{o,ht} \times \text{rental supply in } j}{\text{rental supply in } j}
$$

(33)

$\text{pop}_{j,t} = \text{pop}_j (P_t, R_t)$ denotes the population share of region j at date t and $h_{o,ht} = h_{o,ht} (P_t, R_t)$ the home ownership rate. $\Omega^o_{j,t} = \Omega^o_j (P_t, R_t)$ and $\Omega^r_{j,t} = \Omega^r_j (P_t, R_t)$ are the sets of households who are owners and renters in region j at date t. These objects depend on the vectors of prices and rents in both sets of regions because of spatial sorting.

Model solution Appendix B.4 describes the numerical solution of the model. It exploits the single housing size \bar{h} and the homogeneity of the housing supply function in P_j.

4 Calibration and Baseline Model Results

This section describes how the spatial macroeconomic model of Section 3 is calibrated and linked to the regional panel dataset from Section 2. The model replicates central features of housing and labor markets in the aggregate and in the cross-section of metro areas.

4.1 Calibration

Table 1 summarizes the calibration. Parameters are first split into externally and internally calibrated parameters, and then into aggregate and regional parameters. As in the data, metro areas are split into two groups. Since house prices are determined in equilibrium, structural parameters are chosen to endogenously generate the same low-price regions (“Region L”) and high-price regions (“Region H”) as in the data. A period in the model represents 4 years, and the reference year is 2005. Average worker income Y is normalized to 1.
4.1.1 External Parameters

Aggregate parameters These parameters are common to the two sets of regions.

Preferences. The utility function is CRRA with $\gamma = 2$, a standard value in macroeconomics, which I further discuss it below. The CES aggregator u has an elasticity of substitution between nondurable consumption and housing of 1.25 (Piazzesi, Schneider and Tuzel (2007)).

Labor income process. The persistence is 0.6867, and the standard deviation is 0.3868. Those values are implied by the annual estimates of Floden and Lindé (2001).

Housing depreciation. I restrict the depreciation rate δ to be the same across regions for simplicity. It is equal to 2.39% per year, the average depreciation rate for privately-held residential property in the BEA Fixed Asset tables for the period 1972-2016.

Mortgages. The mortgage rate is $r^b = 0.050$, the average 30-Year Fixed Rate Mortgage Rate in the U.S. prior to the 2000s housing cycle (Freddie Mac, Primary Mortgage Market Survey) minus the CPI inflation (BLS).

The amortization rate $\tilde{\theta}$ is chosen such that the fraction of the principal to be repaid each period, $1 - \tilde{\theta}$, is 6.4%, the four-year equivalent of the value reported by Greenwald, Landvoigt and Van Nieuwerburgh (forthcoming).

The proportional transaction cost of selling a house of $f_s = 0.060$, the fixed and proportional mortgage origination fees of $F_m = 1,200$ and $f_m = 0.8\%$ (Kaplan et al. (2020)).

Student debt. Student debt is modeled as a negative lump-sum transfer, which lowers the initial wealth of households entering the economy after 2005 in the first three periods of their lives by $40,000$ dollars (from 21 to 32 years old), the average student debt level in 2018 (Federal Reserve Bank of New York, CCP).

Recession scarring effect on income. I use empirical estimates for the effect on lifetime earnings of entering the labor market during a recession to calibrate the initial income distribution $\{e_0\}$ from which Millennials draw. Kahn (2010) estimates that a 1 pp increase in unemployment during a recession leads to 2.5-10\% lower wages 15 years later for the cohorts that graduated during the recession. In 2008-10, the unemployment rate rose by 5 pp from 5\% to 10\%. Extrapolating the lower bound of those estimates implies that earnings for this cohort should be about $5 \times 2.5\% = 12.5\%$ lower 15 years later than they would have been if they had graduated in normal times. I choose the average of the distribution of $\{e_0\}$, $\mu e_0 = -0.20$ to match that moment when simulating a panel of Millennial households.
Table 1: Calibration

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Explanation</th>
<th>Value</th>
<th>Source/Target</th>
</tr>
</thead>
<tbody>
<tr>
<td>External: aggregate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>γ</td>
<td>Risk aversion</td>
<td>2.000</td>
<td>See text</td>
</tr>
<tr>
<td>ϵ</td>
<td>CES parameter housing/consumption</td>
<td>0.2</td>
<td>Elasticity of substitution=1.25</td>
</tr>
<tr>
<td>ρ_e</td>
<td>Autocorrelation income</td>
<td>0.914</td>
<td>Floden and Lindé (2001)</td>
</tr>
<tr>
<td>σ_e</td>
<td>Std. dev. income</td>
<td>0.097</td>
<td>Floden and Lindé (2001)</td>
</tr>
<tr>
<td>γ</td>
<td>Min. income</td>
<td>0.100</td>
<td>Guvenen and Smith (2014)</td>
</tr>
<tr>
<td>b_0</td>
<td>Student debt</td>
<td>see text</td>
<td>Federal Reserve Bank of New York</td>
</tr>
<tr>
<td>$F_{iH}(\cdot)$</td>
<td>Millennial initial income distribution</td>
<td>see text</td>
<td>Kahn (2010)</td>
</tr>
<tr>
<td>f</td>
<td>Transaction cost selling</td>
<td>0.060</td>
<td>Kaplan et al. (forthcoming)</td>
</tr>
<tr>
<td>F_m</td>
<td>Fixed mortgage origination fee</td>
<td>0.006</td>
<td>Kaplan et al. (2020)</td>
</tr>
<tr>
<td>f_m</td>
<td>Proportional mortgage origination fee</td>
<td>0.008</td>
<td>Kaplan et al. (2020)</td>
</tr>
<tr>
<td>δ</td>
<td>Housing depreciation/maintenance</td>
<td>0.015</td>
<td>Kaplan et al. (2020)</td>
</tr>
<tr>
<td>External: regional</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ρ_L, ρ_H</td>
<td>Housing supply elasticity</td>
<td>2.700,1.800</td>
<td>Saiz (2010)</td>
</tr>
<tr>
<td>$h_{oL}^{sq ft}, h_{oH}^{sq ft}$</td>
<td>Fraction owner-occupied sqft</td>
<td>0.840, 0.860</td>
<td>Homeownership sqft (AHS)</td>
</tr>
<tr>
<td>β_L, β_H</td>
<td>Sensitivity to agg. income</td>
<td>0.27, 1.15</td>
<td>Estimates (CBP)</td>
</tr>
<tr>
<td>Internal: aggregate</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>Discount factor</td>
<td>0.952</td>
<td>Wealth/income=4.4 (bottom 80%)</td>
</tr>
<tr>
<td>α</td>
<td>Preference for housing services</td>
<td>0.400</td>
<td>Rent/income=0.20</td>
</tr>
<tr>
<td>ι</td>
<td>Mortgage spread</td>
<td>0.006</td>
<td>Leverage=0.37</td>
</tr>
<tr>
<td>θ_{LTV}</td>
<td>Max. LTV ratio</td>
<td>0.900</td>
<td>Top LTV distribution</td>
</tr>
<tr>
<td>θ_{PTI}</td>
<td>Max. PTI ratio</td>
<td>0.580</td>
<td>Top PTI distribution</td>
</tr>
<tr>
<td>d</td>
<td>Utility cost of default</td>
<td>0.75</td>
<td>Avg default rate=0.5%</td>
</tr>
<tr>
<td>m</td>
<td>Utility cost of moving</td>
<td>2.750</td>
<td>Avg moving rate L-H=1.7%</td>
</tr>
<tr>
<td>τ</td>
<td>HSV tax/transfer progressivity</td>
<td>0.290</td>
<td>Avg marginal tax rate=33%</td>
</tr>
<tr>
<td>φ</td>
<td>HSV tax/transfer level</td>
<td>0.900</td>
<td>Net taxes/income=0.10</td>
</tr>
<tr>
<td>ψ</td>
<td>Bequest motive level</td>
<td>0.200</td>
<td>Bequest/income=0.05</td>
</tr>
<tr>
<td>b</td>
<td>Bequest motive homotheticity</td>
<td>0.001</td>
<td>Normal good</td>
</tr>
<tr>
<td>Internal: regional</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{L}, I_H</td>
<td>Size residential investment</td>
<td>0.048,0.014</td>
<td>$P_L = $100,000, P_H = $240,000</td>
</tr>
<tr>
<td>Ξ_{L}, Ξ_{H}</td>
<td>Amenity benefits</td>
<td>0.000,0.508</td>
<td>$R_L = $1,111, R_H = $1,206</td>
</tr>
<tr>
<td>Ξ_{oL}, Ξ_{oH}</td>
<td>Additional home ownership benefits</td>
<td>0.822,0.904</td>
<td>$h_{oL}^{bh} = 69%, h_{oH}^{bh} = 67%$</td>
</tr>
</tbody>
</table>

Notes: One model period is four years. Parameters and targets are annualized. Sources are as follows. The 30-year fixed rate mortgage rate is from Freddie Mac’s Primary Mortgage Survey. The wealth/income ratio is for the bottom 80% of households in the SCF. Leverage is measured as total mortgage debt outstanding to housing wealth, using the levels of home mortgages outstanding and the levels of real estate at market value for households and nonprofit organizations from the Financial Accounts of the U.S. (Z.1., Federal Reserve Board). The average moving rate is from the ACS for 2011-2015 (annual). The average default rate in 2007 from RealtyTrac. The tax rate targets are from Heathcote et al. (2017). The bequest targets are from Straub (2019). House prices and rents (monthly) are from Zillow (in 1999 dollars), homeownership rates are from the ACS, the average rent/average income ratio is from the CEX (includes utilities). Amenity benefits in Region L are normalized to zero.
Regional parameters These parameters differ between regions.

Regional business cycle sensitivity. High-price regions have a higher sensitivity than low-price regions to aggregate income shocks, \(\beta_H = 1.75 > \beta_L = 0.27 \). To obtain these values, I estimate the elasticity of median income to U.S. income at the MSA level, using a panel of MSAs in County Business Patterns. Estimates are then matched with the main dataset, and averaged by region groups using population sizes as weights.\(^{20}\)

Housing supply elasticity. Using the same procedure, I merge estimates from Saiz (2010) and average them using population sizes as weights. I obtain \(\rho_L = 2.7 \) and \(\rho_H = 1.8 \).

Owned square footage. The fraction of square footage devoted to owner-occupied units is similar in the two sets of regions, around 80% (AHS). This number reflects, first, that home ownership rates among households are similar across regions and close to the aggregate rate of 68.8%; second, that owner-occupied units are on average 50% larger than rentals (Chatterjee and Eyigungor (2015)).

4.1.2 Internal Parameters

Aggregate moments The following parameters are chosen to match aggregate moments.

Discount factor. \(\beta \) is chosen to match a ratio of aggregate wealth to aggregate income of 4.4 for the bottom 80% of households (Survey of Consumer Finances).\(^{21}\)

Housing services. The CES weight \(\alpha \) on housing services is chosen to match an average rent to average income ratio of 0.20 as measured in the Consumer Expenditure Survey (including utilities).

Mortgage spread. \(\iota = r^b - r = 0.6\% \) is chosen to match aggregate leverage, measured as total mortgage debt outstanding to housing wealth. I respectively use the levels of home mortgages outstanding and of real estate at market value for households and nonprofit organizations from the Financial Accounts of the U.S. (Z.1., Federal Reserve Board), and calculate a ratio of 0.37 for 2005. \(\iota \) implies a value for the rate of return on savings of \(r = 0.044 \). This value can be viewed as the rate of return on a bundle of liquid assets, which include both low return bonds and high return stocks, a common interpretation.

Credit standards. The maximum loan to value and payment to income ratios \(\theta_{LTV} = 0.900 \) and \(\theta_{PTI} = 0.580 \) are chosen to match the 90th percentiles of the LTV and PTI distributions among mortgagors (Kaplan et al. (2020), Greenwald (2018)).

\(^{20}\)These estimates also reflect the feedback from house prices into labor income in the data (Mian et al. (2013), Mian and Sufi (2014)).

\(^{21}\)The model lacks a mechanism to generate high income inequality at the top (e.g., heterogeneity in discount factors, “superstar” income levels). For all households, the wealth/income ratio is 5.6.
Mortgage default. The default cost \(d = 0.75 \) is chosen to match the average foreclosure rate of 0.5% in the cross-section of MSAs in 2005 (RealtyTrac).

Taxes and transfers. I calibrate \(\tau \) and \(\varphi \) in the schedule \(T(Y) = Y - \varphi Y^{1-\tau} \), to match the progressivity and the level of the U.S. tax system (\(Y \) is pre-tax earnings). The income-weighted marginal tax rate is 0.33. Net taxes are used to finance wasteful government expenditures. This delivers \(\tau = 0.29 \), close to the empirical estimate of Heathcote et al. (2017), and \(\varphi = 0.90 \). The government also imposes a minimum income level equal to 10% of average income, which ensures that households’ choice sets are nonempty (e.g., Guvenen and Smith (2014)).

Bequests. The warm-glow bequest motive \(\psi \) is chosen to match the ratio of average bequests to average income of 0.05 reported by Straub (2019).

Regional moments. The remaining parameters are calibrated to match regional moments, which determine the sensitivity of local markets to aggregate shocks.

Housing markets. Amenity benefits \(\{ \Xi^a_j \} \), supply constraints \(\{ I_j \} \), and home ownership benefits \(\{ \Xi^o_j \} \) in regions \(j = L, H \) (three sets of two parameters) are jointly calibrated to match the levels of average rents \(\{ R_j \} \), house prices \(\{ P_j \} \), and home ownership rates \(\{ h_{o,j}^{hh} \} \) (three sets of two moments). I find the following:

(i) Amenity benefits are higher in Region H than in Region L, as implied by higher rents. They represent a utility gain equivalent to 35.6% of the average utility that a household derives from nondurable consumption and housing services in one period (four years). This is consistent with evidence on the strong appeal of high-price metro areas in the 2000s (Guerrieri, Hartley and Hurst (2013), Diamond (2016)). These differences create an incentive for households to locate in high-amenity regions, which results in higher local rents and prices through endogenous sorting of buyers by age, income, and wealth.

(ii) It is 3 times more costly for the construction sector to produce the same square footage of housing in region H than in Region L.\(^{22}\) This is consistent with those regions having tighter geographic and population constraints in the data (e.g., Mayer (2011)).

(iii) The utility benefits from home ownership are sizable. They represent 63.4% of the average utility that a household derives from consumption in one period. They are slightly higher in Region H, because regional differences in price-to-rent ratio are larger than differences in income (both are higher in Region H). Therefore higher benefits in

\[\text{Inverting the reduced-form residential investment function, the cost of producing one sqft of housing is } \left(\frac{1}{I_L} \right)^{\bar{r}} \text{ in Region L, and } \left(\frac{1}{I_H} \right)^{\bar{r}} \text{ in Region H}. \]

31
Region H are required to match similar home ownership rates across regions.

Migrations. Using ACS data on migrations between all pairs of metro areas, I calculate an annual gross migration rate of 1.6% between low- and high-price regions.\(^{23}\) The model matches that value. The implied utility cost of migrating \(m = 2.750\) is equivalent to 280.7% of the average utility that a household derives from nondurable consumption and housing services in a period. This high value is consistent with current estimates of migration costs (Kennan and Walker (2011)), and stands for migration-reducing forces not explicitly modeled (e.g., Kaplan and Schulhofer-Wohl (2017)). Since \(m\) is a fixed additive utility cost, it is larger in welfare terms for older households. Hence it generates a downward-sloping life-cycle profile of migrations as in the data.\(^{24}\)

4.2 Steady State Results

The model replicates key moments of housing and mortgage markets at the aggregate, household, and regional levels. Aggregate moments are summarized in Table 2. They are obtained by aggregating household-level variables using the cross-sectional distribution of households’ locations, home ownership statuses, ages, income, and wealth in 2005.

Table 2: Aggregate moments

<table>
<thead>
<tr>
<th>Variable</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wealth/income</td>
<td>4.40</td>
<td>4.15</td>
</tr>
<tr>
<td>Avg. rent/ income</td>
<td>0.23</td>
<td>0.22</td>
</tr>
<tr>
<td>Leverage</td>
<td>0.37</td>
<td>0.32</td>
</tr>
<tr>
<td>P90 LTV</td>
<td>0.92</td>
<td>0.83</td>
</tr>
<tr>
<td>P90 PTI</td>
<td>0.58</td>
<td>0.56</td>
</tr>
<tr>
<td>Migration Rate</td>
<td>0.016</td>
<td>0.014</td>
</tr>
</tbody>
</table>

Table 3 shows that the model also matches the distribution of LTV and PTI ratios, which is not targeted. In addition, it generates close to the right fraction of home owners

\(^{23}\)I use the Metro Area-to-Metro Area In-, Out-, Net, and Gross Migration table, which is data aggregated for the 2012-2016 period. I merge it with my panel to obtain a cross-section of MSA pairs. The corresponding survey question asks respondents whether they have lived in the same MSA for a year or moved from another MSA.

\(^{24}\)\(m\) is substantially higher than the default cost \(d\). This is because default is costly even without its utility cost, as households lose the value of their houses and the benefits of home ownership.
with a mortgage (66%), and slightly overstates the average size of owner-occupied units relative to rentals (Appendix Table 10).

Table 3: Aggregate LTV and PTI distributions

<table>
<thead>
<tr>
<th></th>
<th>LTV Data</th>
<th>LTV Model</th>
<th>PTI Data</th>
<th>PTI Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>P10</td>
<td>0.19</td>
<td>0.26</td>
<td>–</td>
<td>0.08</td>
</tr>
<tr>
<td>P25</td>
<td>0.40</td>
<td>0.44</td>
<td>–</td>
<td>0.13</td>
</tr>
<tr>
<td>P50</td>
<td>0.64</td>
<td>0.62</td>
<td>0.36</td>
<td>0.28</td>
</tr>
<tr>
<td>P75</td>
<td>0.79</td>
<td>0.79</td>
<td>0.48</td>
<td>0.37</td>
</tr>
<tr>
<td>P90 (targeted)</td>
<td>0.92</td>
<td>0.83</td>
<td>0.58</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Notes: Moments not targeted by the calibration. Sources: Kaplan et al. (2020), Greenwald (2018).

The model generates significant heterogeneity between MSAs. Table 4 shows that it exactly matches the cross-section of house prices levels by virtue of the solution method, and closely matches rents and home ownership rates. Income, which is not targeted by the calibration, is on average 30% higher in Region H than in Region L as in the data, because of endogenous sorting. Importantly, income in Region H is not high enough to fully compensate for house prices, a sign that sorting is limited. Therefore, the resulting price-to-income ratio is higher in high-price regions. The price-to-rent ratio and the population share of high-price regions are also higher.

Table 4: Regional moments

<table>
<thead>
<tr>
<th>Variable</th>
<th>Data L</th>
<th>Model L</th>
<th>Data H</th>
<th>Model H</th>
</tr>
</thead>
<tbody>
<tr>
<td>Price per unit</td>
<td>100,000</td>
<td>100,000</td>
<td>240,000</td>
<td>240,000</td>
</tr>
<tr>
<td>Rent per unit</td>
<td>1,111</td>
<td>1,010</td>
<td>1,206</td>
<td>1,415</td>
</tr>
<tr>
<td>Homeownership rate</td>
<td>0.69</td>
<td>0.69</td>
<td>0.67</td>
<td>0.67</td>
</tr>
<tr>
<td>Income</td>
<td>29,300</td>
<td>29,309</td>
<td>38,261</td>
<td>38,253</td>
</tr>
<tr>
<td>Price/income</td>
<td>3.41</td>
<td>3.41</td>
<td>6.27</td>
<td>6.27</td>
</tr>
<tr>
<td>Price/rent</td>
<td>7.50</td>
<td>8.25</td>
<td>16.58</td>
<td>14.13</td>
</tr>
<tr>
<td>Population share</td>
<td>0.42</td>
<td>0.39</td>
<td>0.58</td>
<td>0.61</td>
</tr>
</tbody>
</table>

Notes: Top panel: moments targeted by the calibration. Bottom panel: moments not targeted. Sources: ACS, Zillow, BLS. Prices and rents (monthly) in 1999 dollars.

The regional life-cycle profiles of income and wealth (Appendix Figure 26) show that average household wealth is always higher in Region H, except for the youngest households (less than 28 years old). This is first due to higher savings (before age 40), then to
higher housing wealth (after age 40). Households in Region H accumulate more savings than in Region L because they are more productive and have to meet larger down payment requirements when buying. In contrast, average income is similar across regions for young households (before age 40). This implies higher price-to-income and payment-to-income ratios in Region H, where average house prices are more than twice higher than in Region L. Therefore, young households’ decision to buy is more elastic to PTI constraints in Region H.

The model also generates realistic life-cycle profiles of household mobility between regions (Appendix Figure 27). As in the data, younger households migrate more. Among young households, more productive ones migrate more. In the data, unconditional migration rates between metros are slightly decreasing with income, but conditional rates are increasing for young households, especially college-educated ones with higher permanent income. Finally, renters have a higher migration rate than owners because they tend to be younger and do not need to pay the seller’s transaction cost when moving.

4.3 Key Mechanisms

Several features of the model explain these results and are key for the economy’s dynamic response to shocks.

Local amenities Differences in amenities \(\Xi^H > \Xi^L \) attract households to Region H. They account for unmodeled features that make living and owning in those regions more attractive (as in e.g., Rosen (1979), Roback (1982)). Higher local housing demand, combined with higher construction costs \(1/\bar{I}_H > 1/\bar{I}_L \) and a lower price-elasticity \(\rho_H < \rho_L \), endogenously lead to higher prices in these regions. Higher demand comes from attracting more and richer households. This effect arises from the concavity of \(u \), which makes it less costly for rich than for poor households to sacrifice nondurable consumption to enjoy higher amenities. Richer buyers further contribute to increasing house prices, which generates more spatial sorting by income, wealth, and age.

25 In the ACS, I calculate that 16-24 year old respondents are 40% more likely to move than 25-64 year olds (with average mobility rates of 2.75% versus 1.99%), and 280% more likely to move than 65+ year olds (0.72%). Source: Table 17 of the ACS in 2006-07 for Metropolitan Mobility of Persons 16 Years and Over, by Sex, Age, Race and Hispanic Origin, and Labor Force Status.

26 Source: ACS, Table 22. See also Frey (2019), and for anecdotal evidence, “Migrant Millennials are redrawing the map of America”, Financial Times, 6/26/2018.

27 During the transition dynamics, there is also a “lock-in” effect of home ownership, whereby owners are reluctant to sell their house at lower prices and choose to not move (Karahan and Rhee (2019)).

28 This is an important difference from standard urban economics models with risk-neutral households.
Local income The income process is supermodular in its age, idiosyncratic, and regional components. Workers with higher income, either because of age or a temporary positive shock, have an incentive to locate in regions with higher average income. The regional exposures to aggregate income shocks $\beta_H > \beta_L$ creates an additional motive for spatial sorting. When the economy is hit by a negative shock with a larger effect on Region H, the incentive for richer households to stay in these regions decreases. It leads some of them to move to Region L, amplifying the decrease in local prices in their region of origin, and dampening it in their region of destination.\footnote{In the calibration, the differences in amenities and construction costs, which are required to match house price and rent differences between regions, endogenously generate the same income differences as in the data. Different exogenous average productivities $\mu_H > \mu_L$ are not needed. If they were included, they would reduce the estimated differences in amenities and construction cost between regions. The effect of shocks on regional prices would be the same, because regional credit constraints would be equally likely to bind once house price differences are matched.}

Spatial sorting Households move between regions in steady state and in response to shocks. In steady state, amenity differences and housing costs are the only motive for moving. Households can move if they experience age-determined and stochastic income changes that make it too costly to stay in a given region. In response to shocks, households can move to regions where income decreases less and where housing becomes cheaper. Spatial sorting is limited by the fixed moving cost m and the option to rent, which allows households to enjoy higher amenities $\Xi_H > \Xi_L$ without owning.\footnote{It is straightforward to add exogenous moving shocks, but not needed because the calibrated model endogenously generates realistic migration flows between metro areas. Furthermore, it is likely that moves between regions are more driven by endogenous decisions than moves within a region, which are also driven by exogenous shocks (Krivenko (2019)). The steady state net migration rate is zero because the model is stationary, but the gross migration rate is positive.}

Risk aversion First, risk aversion γ amplifies the decrease in home ownership and prices when the economy is hit by a negative shock, as households are less willing to hold owner-occupied units. Long-term mortgages, which must be amortized every period, create a consumption commitment (Chetty and Szeidl (2007)). Households are more reluctant to make this commitment when risk aversion is high and income is persistently low, since it makes consumption smoothing harder. Second, risk aversion interacts with location choices. The higher it is, the less willing low-income households are to buy in Region H, where the consumption commitment is stronger because of higher house prices. Therefore risk aversion increases sorting by income. These effects are dampened by the options of migrating and of defaulting, which partly alleviate this commitment. When
risk aversion is lower, owners migrate and default more often, and hold less liquid assets and more mortgage debt.

5 Aggregate Recessions and Regional Housing Markets

This section presents the main quantitative findings on the regional transmission of aggregate shocks to young buyers and housing markets. I first study the dynamics of home ownership, house prices, and rents. Then I decompose the contributions of income and credit supply shocks, and analyze the role of heterogeneity in regional house prices. I find that regionally-binding credit constraints have shaped the dynamics of young home ownership and housing markets since the Great Recession.

These results are obtained by solving for the nonlinear transition dynamics of the two-region economy in response to unanticipated aggregate shocks to income and mortgage standards, \(\{ \eta_{US,t} \} \) and \(\{ \theta_{LTV,t}, \theta_{PTI,t}, F_m,t, f_m,t \} \). It involves solving for the full paths of four prices \(\{ P_L,t, P_H,t, R_L,t, R_H,t \} \).

5.1 Heterogeneous Housing Market Dynamics

Aggregate Shocks The recession consists of a sequence of negative shocks to income and credit standards, which enter as inputs into the model. One period is four years. The first period is 2002-05 \((t = 0)\), prior to the bust. The aggregate income shock \(\{ \eta_{US,t} \} \) in 2006-09 and 2010-13 \((t = 1, 2)\) is chosen to generate the same decrease in real average income of 9.2% and 1.8% as in the data, relative to 2005. Because \(\beta_H > \beta_L \), it translates into a larger shock in high-price regions as in the data. Average income falls by up to 2% in low-price metro areas and 11% in high-price metro areas.

The maximum LTV and PTI constraints \(\{ \theta_{LTV,t}, \theta_{PTI,t} \} \) in 2006-09, 2010-13, and 2014-2017 \((t = 1, 2, 3)\) are chosen to generate a 20% decrease in leverage from 2005 to 2014 as in the data. This requires a 19.50% decrease in the maximum LTV and a 49% decrease in the maximum PTI ratios (from 90% to 72% and from 58% to 29%). Simultaneously, the fixed and proportional mortgage origination costs \(\{ F_m,t, f_m,t \} \) increase from $1,200 to $2,000 and from 0.60% to 1%. Credit supply shocks take an additional period in 2018-21

31Migratory insurance arises from regional income differences as in Blanchard and Katz (1992), but also from house price and mortgage payment differences. Glaeser (2008), Notowidigdo (2019), and Bilal and Rossi-Hansberg (2020) provide empirical evidence that some households migrate to weaker labor markets to enjoy lower costs of living.
to vanish, to reflect the tightness of mortgage credit after the Great Recession. As in the data, credit shocks are identical across regions.32

Home ownership Figure 7 decomposes the decrease in home ownership in response to the recession between age and region groups. It matches two features of the data. First, the decrease in home ownership is concentrated among young households (25-44 years old), as in Figure 1. Those households rely more on credit to buy homes than older ones who either already own or have accumulated more savings, as shown by their life-cycle profiles. Second, for young households, the decrease is concentrated in high-price metro areas, as in Figure 2. From 2005 to 2015, young home ownership decreases by 10\% in Region L and by 20\% in Region H. In contrast, old home ownership only falls by 5\% in both regions (in the remaining of the text, the dynamics of old home ownership is plotted in in Appendix D). When aggregating metro areas, the model replicates the 8\% decrease in average home ownership from peak (69\%) to trough (63.4\%). Importantly, the model generates significant regional heterogeneity in responses to the aggregate recession, despite the fact that regions are hit by identical credit shocks. There is no residual role for changes in Millennials’ preferences towards owning to explain the decrease in home ownership, consistent with survey evidence (Appendix A.7). Lastly, regional differences in home ownership busts are much larger than in local income. I show below that the latter has little effect on the dynamics of housing markets.

The model implies a larger and more persistent decrease in young home ownership in high-price metro areas. Because credit standards apply only at origination, their effect is close to zero in $t = 1$ and thus limited when they are first tightened. However, they ultimately lead to a 10\% and a 55\% decrease in young home ownership in low- and high-price metros, with a trough in $t = 4$ as the shock starts reverting. Their effect is persistent four years after the shocks have dissipated, but only in high-price regions, where young home ownership is still 25\% lower in $t = 5$. In the absence of shocks in subsequent periods, young households eventually buy as they grow older, and new entrants buy at higher rates than previously constrained households at the same age.

The persistent decrease in home ownership after the Great Recession results from a decrease in households’ propensities to buy, which translates into young buyers delaying

32These values are similar to Kaplan et al. (2020) and Favilukis et al. (2017), and lower than Goodman (2017). Income data: Real Median Household Income in the United States, U.S. Census Bureau, Income and Poverty in the United States. Leverage data: aggregate leverage is measured as total mortgage debt outstanding to housing wealth in the Flow of Funds.
Figure 7: Home ownership response to aggregate recession

Notes: Home ownership changes for 25-44 year old households (left panel), 45-85 year old households (middle), aggregate (right). Low-price MSAs in blue, high-price MSAs in red, economy average in black. Model: solid lines. Data: dashed line (source: ACS). Changes in percentage terms relative to 2005.

home ownership. Appendix Figure 31 shows that the average probability for a renter to buy a house falls by up to 40% in low-price regions and 60% in high-price regions, where it stays persistently low even after the credit shock is over. The decrease is largest for young buyers in high-price regions and old buyers in low-price regions. However, because older households only represent a small fraction of new buyers, it is the decrease in young households’ propensity to buy in high-price regions that explains most of the aggregate drop of 40%. The drop in households’ entry rate into home ownership is 12 years more persistent than the 4-year increase in their exit rate through defaults, hence it is critical for the persistence of low home ownership after the recession.

House prices and rents Figure 8 plots the response of regional and aggregate house prices. The model matches the 10% price decrease in low-price MSAs, and about half of the 45% price decrease in high-price MSAs. Constructing the aggregate house price index as a value-weighted index of regional prices, the model generates a 17% decrease, more than two thirds of the 21% decrease in the data. Most of it is driven by high-price regions.

As for home ownership, regional differences in house price busts are not driven by heterogeneous credit contractions, but rather by heterogeneous responses to the same credit shocks. As I show below, heterogeneous income shocks only slightly amplify those regional differences, and they are unable to generate them when considered in isolation.
This finding is in contrast with existing models of regional housing markets, where different local shocks are necessary to match differences in local house price busts. In an extended version of the model (Appendix F), I show that different valuation shocks Ξ^o_j to owner-occupied housing are only needed to match the remaining fractions of the house price bust in high-price metro areas. They are not needed to generate significant regional differences in house price busts.

Figure 8: House price response to aggregate recession

Notes: Left panel, house price changes in low-price MSAs (blue) and high-price MSAs (red). Right panel, aggregate house price change. Aggregate house price index calculated as the value-weighted average of regional house prices. Solid lines: model. Dashed lines: data (source: Zillow). Changes in percentage terms relative to 2005.

The recession initially generates a decrease in rents following the income shock, but then a sustained increase in both regions, in line with the data (Appendix Figure 30). The model generates close to the 5% increase in rents in low-price metros and the zero change in high-price metros in 2010-13. It predicts a subsequent persistent increase of almost 10% in both sets of regions, which is a general equilibrium response to lower income and tighter credit conditions. Because young households delay buying but have a higher housing consumption target because of the upward-sloping life-cycle profiles of income and wealth, they consume more rental services. This result is consistent with the evidence of a rental boom during the recovery from the Great Recession (Gete and Reher (2018)). As a result, rents recover two to three times faster than house prices.

33Such shocks are required to match the dynamics of foreclosures in the data. Guren and McQuade (2020) study such shocks, and Kaplan et al. (2020) study related belief shocks to the value of housing.

34These numbers refer to detrended rents in the data, to make them stationary as in the model. Without detrending, raw rents always increase in the data, except in the first year after the Great Recession.
5.2 Shock Contributions

Nonlinear decomposition Appendix Figure 32 decomposes the contributions of income and credit shocks to the responses of home ownership and house prices across regions. It isolates the responses to an aggregate income, LTV, and PTI shock, and compares them to the responses in the benchmark model, which combines these three shocks. The decrease in maximum PTI ratios (dashed line), which is identical across regions, is by far the main driver of the dynamics of young home ownership and house prices. In particular, it alone generates a 30% decrease in young home ownership in high-price regions (50% in the benchmark) and a 15% decrease in house prices (17% in the benchmark). Local income shocks alone (dotted line), which are more negative in high-price regions, respectively only generate a 1% and a 2% decrease. The decrease in maximum LTV ratios (dashed-dotted line) has virtually no effect.

In response to the shocks taken separately, young home ownership and house prices decrease in high-price regions, and they simultaneously increase in low-price regions because of spatial equilibrium. This result is due to the migration of some young buyers from high-price into low-price regions, which is absent from models of the aggregate housing market and from models with no migration. It is consistent with empirical evidence on the “migration accelerator” (e.g., Howard (2019)). Identical credit shocks across regions generate the largest differences in the signs and magnitudes of the regional impulse responses. The model allows to quantify their impact on the region of destination and on the region of origin of migrating households. Young home ownership and prices increase in the destination in response to in-migration, and they decrease in response to out-migration in the region of origin. As a result, migrations can amplify regional housing cycles in response to aggregate shocks, a finding that contrasts with their long-run stabilizing effect (Blanchard and Katz (1992)).

Despite the positive effect of separate income and credit shocks in low-price metro areas, the total effect on home ownership and prices is negative in both regions in the benchmark model because of the interaction of the shocks. When households want to move from high-price to low-price regions to become home owners because of tighter credit, lower income make it harder for them to buy even in low-price regions. This effect is reinforced by the multiplicative interaction of tighter PTI ratios and lower incomes in home buyers’ borrowing constraints, which determine their maximum affordable price.

35Average income shocks have little impact in many housing market models, e.g. Favilukis et al. (2017) and Kaplan et al. (2020). Increases in income risk, especially left-tail shocks, have a larger impact as they lead households to delay buying in models with inaction regions (e.g. Garriga and Hedlund (2020)).
as in the numerical example of Section 2.4,

\[
P = \min \left[\frac{1 - (1 + r)^{-n}}{r^b} \theta_{PTI} Y + \text{downpayment}, \frac{\text{downpayment}}{1 - \theta_{LTV}} \right]. \tag{34}
\]

Regionally-binding credit constraints PTI constraints have a larger impact than LTV constraints on home ownership, in contrast with popular narratives that attribute its drop to high down payments.\(^{36}\) First, the decrease in the maximum PTI ratio required to match the decrease in household leverage in the model is two to three times larger than for LTV, therefore its impact is larger all else equal. In the data, PTI constraints fell by more and more persistently too, while LTV constraints changed by little.\(^{37}\)

Then, PTI constraints are binding for more prime-age buyers, with the largest impact on housing markets, and they are more binding in high-price metros, where the decrease in young home ownership is concentrated. Figure 9 plots, for low-price and high-price metro areas (left panel, right panel), the shares of LTV-constrained and PTI-constrained buyers over the life-cycle (dashed and solid lines on the left axes). Bars measure renters’ propensity to buy at various ages (right axes). The higher it is, the larger the impact of binding credit constraints is on housing markets’ responses to the credit contraction. The purchase rate is the product of the fraction of renters and the average probability to buy conditional on age. It decreases with age as more renters become owners, and it is higher in high-price metro areas because they have more renters, so credit constraints apply to more potential buyers.

The transmission of shocks into home ownership is determined by three features of regional credit constraints. First, the share of credit-constrained buyers decreases with age as income and wealth grow, and then increase again after retirement when income falls. Second, there are more credit-constrained buyers in high-price metros (more than 70% of prime age buyers are constrained), except for the youngest buyers (21-24 years old) who are almost all constrained in low-price metros. Third, PTI constraints are more binding (78%) than LTV constraints (60%) in high-price metros, especially for 25-44 year old buyers with high purchase rates. LTV constraints bind more than PTI constraints in both regions only for the youngest buyers.

\(^{36}\)See e.g. “‘It’s a lot tougher nowadays’: Millennial homebuyers challenged with down payments and inventory”, *Chicago Tribune*, 1/29/2020.

\(^{37}\)Between 2005 and 2017, the 90th percentile of the PTI distribution at origination fell from 55% to 45% while it fell from 102% to 98% for the combined LTV distribution, for loans in Black Knight, eMBS, HMDA, SIFMA, CoreLogic and Urban Institute data (“Housing Finance at a Glance”, *Urban Institute*, December 2019).
These features are due to the endogenous sorting of buyers across regions. Richer buyers tend to locate in high-price metros. In addition, renters tend to buy at older ages in those regions because house prices are higher. They have accumulated enough savings for a down payment at the time they buy. For the same reason, there are few older LTV-constrained buyers, since households usually sort across regions earlier in their life-cycles. If households still want to buy after retirement, either they have accumulated enough savings for a down payment, or they are moving from another metro area where they are selling their previous house. Appendix Figure 29 confirms these findings by plotting the regional life-cycle profiles of the 75th percentiles of the LTV and PTI distributions and comparing them with the maximum LTV and PTI ratios during the credit contraction. It shows that PTI constraints are more binding in high-price than in low-price MSAs at ages when households are most likely to buy.38

38These findings do not imply that LTV constraints have no effect on young home ownership. LTV constraints are key to explain the upward-sloping life-cycle profile of home ownership because of households’ time to accumulate a down payment (Appendix Figure 26). All else equal, they contribute to lower young home ownership in the long run when combined with rising house prices, i.e. when computing a sequence of steady states with increasing prices. However, they cannot explain the large and persistence decrease from the trend after the Great Recession.
5.3 Time-Varying Transmission

The importance of regional credit constraints is time-varying, and increasing in preexisting differences in house price levels between regions. To illustrate how prices affect young buyers’ credit constraints, Figure 10 plots responses for a counterfactual experiment with the less heterogeneous house price distribution of 1997. In that economy, aggregate and regional parameters are recalibrated to match the same targets as in the benchmark model, except for house price levels. In 1997, average house prices in Region L were $95,000 ($100,000 in 2005) and $110,000 in Region H ($240,000 in 2005). The effect of regional credit constraints is muted: the less unequal distribution ex ante implies less unequal responses ex post, and a smaller aggregate bust. In 2005, the bust in young home ownership is amplified when credit contracts (-58% vs. -20% in 1997). In equilibrium, it also makes housing markets more volatile (prices fall by -18% vs. -14% in Region H). This result implies that policies seeking to stabilize the aggregate housing market should focus on high-price regions (see Section 7.2).

6 Impacts of Region and Cohort Differences

What explains different regional responses to identical aggregate shocks, which generated the persistent decrease in young home ownership since the Great Recession? This section studies the determinants of the heterogeneous transmission documented earlier. I first study the role of structural parameters governing regional differences, then of initial differences between cohorts of buyers. Finally, I show how these effects depend on spatial mobility. I distinguish between the short-run and the long-run effects of those features. They respectively correspond to the economy’s transition dynamics in response to temporary aggregate shocks, and to its steady state after the shocks.

6.1 Preexisting Regional Heterogeneity

I start by studying the determinants of preexisting regional differences in house prices. They induce credit constraints to be more binding in high-price metro areas, and these areas to contract more even in response to symmetric shocks. Table 5 shows steady state housing quantities and prices in a comparative statics analysis, which sets regional differences to zero for each set of parameters in isolation. Higher amenity benefits $\xi^H > \xi^L$ for rentals and owner-occupied units are responsible for house prices being on average...
Figure 10: Home ownership and house price response to aggregate recession under alternative house price distributions

$80,237 higher in Region H in the benchmark, and for young home ownership being lower by 16 pp. Because young households who cannot afford high-price MSAs sort and buy in low-price MSAs, the young home ownership rate in those regions is slightly higher in the benchmark (+3 pp). The price is slightly lower because the marginal home buyer is poorer (-$3,530). Amenities reflect the desirability of the various metro areas, which potentially varies over time. In particular, higher amenity differences are needed to generate house price differences in 2005 relative to 1997.

The effects of supply side factors on home ownership and house prices are sizable but lower. Differences in construction costs $1/T_H > 1/T_L$ contribute to prices being $26,555 higher in high-price regions in the benchmark, with a slightly negative effect on young home ownership (-3 pp). They contribute less than amenities to regional house price

\[39\]

Construction costs reflect physical and regulatory limits on housing supply, such as mountains and coasts, and permit approval time (e.g., Gyourko, Saiz and Summers (2008)).
differences, hence to the importance of regional credit constraints. The price-elasticity parameter \(\rho_j \) has little effect on steady state levels by construction, but it affects the dynamic responses to the shocks.

Table 5: Long-run housing market impact of regional heterogeneity

<table>
<thead>
<tr>
<th>Variable</th>
<th>Benchmark</th>
<th>Same amenities</th>
<th>Same construction cost</th>
<th>Same supply elasticity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P_L)</td>
<td>100,000</td>
<td>103,530</td>
<td>96,243</td>
<td>101,037</td>
</tr>
<tr>
<td>(R_L)</td>
<td>1,010</td>
<td>1,074</td>
<td>898</td>
<td>972</td>
</tr>
<tr>
<td>(h_{\text{young}})</td>
<td>0.57</td>
<td>0.54</td>
<td>0.52</td>
<td>0.55</td>
</tr>
<tr>
<td>(h_{\text{all}})</td>
<td>0.69</td>
<td>0.74</td>
<td>0.66</td>
<td>0.68</td>
</tr>
<tr>
<td>(P_H)</td>
<td>240,000</td>
<td>159,763</td>
<td>213,445</td>
<td>238,435</td>
</tr>
<tr>
<td>(R_H)</td>
<td>1,415</td>
<td>1,656</td>
<td>768</td>
<td>1,090</td>
</tr>
<tr>
<td>(h_{\text{young}})</td>
<td>0.38</td>
<td>0.54</td>
<td>0.41</td>
<td>0.40</td>
</tr>
<tr>
<td>(h_{\text{all}})</td>
<td>0.67</td>
<td>0.72</td>
<td>0.66</td>
<td>0.66</td>
</tr>
</tbody>
</table>

Notes: In the benchmark model, high-price MSAs have higher amenity benefits, higher construction costs, a lower price-elasticity of housing supply. Comparative statics analysis: columns after “Benchmark” show the steady state values of the variables of interest when setting each of these parameters in isolation equal to their values in low-price MSAs. “Same amenities”: \(\Xi_H = \Xi_L \). “Same construction costs”: \(I_H = I_L \). “Same supply elasticity”: \(\rho_H = \rho_L \). Prices and rents are in 1999 dollars.

Appendix Figure 34 plots the economy’s transition dynamics in counterfactual scenarios without regional heterogeneity, in response to the same aggregate recession as in Section 5. It compares home ownership and house price responses when regional differences are set to zero for each set of parameters in isolation, to the benchmark with all the differences. Without differences in amenities (\(\Xi^H = \Xi^L \)), young home ownership falls by less than 20% in high-price MSAs instead of more than 50% in the benchmark. As a result, the busts in home ownership become almost identical across regions, at odds with the data. Regional differences in house price busts almost vanish (from a 9 pp difference in the benchmark to 3 pp). It makes it impossible for the model to generate an aggregate housing bust driven by high-price regions as in the data. Without differences in construction costs \(I_H = I_L \), the responses of the two housing markets are also closer. However, the effect is weaker than for amenities (price differences fall from 9 pp in the benchmark to 5 pp), and it is even lower for housing supply elasticity differences (when \(\rho_H = \rho_L \), price differences fall from 9 pp in the benchmark to 7 pp). Overall, amenity differences contribute as much to regional differences in housing busts in the short run as differences in housing supply costs and elasticities combined. This finding nuances the role of housing supply constraints in the long run emphasized e.g. by Glaeser and Gyourko (2005).\(^{40}\)

\(^{40}\)It is consistent with Davidoff (2013), who shows that differences in housing supply elasticity cannot
6.2 Differences Between Cohorts

I now study how differences between cohorts of first-time buyers before and after the Great Recession contributed to the dynamics of young home ownership across regions, and quantify their contributions to housing market volatility. I focus on two features of the Millennial cohort: first, the scarring impact on their earnings of entering the labor market during the recession; second, the impact of high student debt. Both factors are popular cohort-based explanation for low home ownership rates among Millennials (e.g. Bleemer et al. (2017)). Yet their effects have not been disentangled from life-cycle-based and shock-based explanations, nor quantified in a counterfactual setting.

In the benchmark model, Millennial households (i) have lower wealth in their twenties and early thirties, calibrated to reflect the average student debt burden; (ii) draw their initial income from a distribution that is first-order stochastically dominated by the distribution in normal times, which lowers their entire income profile because of the persistence in the idiosyncratic process. Table 6 presents steady state home ownership and prices in counterfactual economies where these features are turned off in isolation. Qualitatively, the impacts of student debt and graduating in the recession are the same. The former directly lowers wealth, hence makes LTV-constrained more likely to bind. The latter lowers income, hence makes PTI constraints more likely to bind. Through wealth accumulation, it also lowers savings and make LTV constraints more likely to bind. Therefore, they both decrease home ownership and prices nationwide. Quantitatively, the recession’s scarring effect on income has a larger impact on housing markets. In high-price MSAs, home ownership would be 2 pp higher without student debt and 6 pp higher without the recession’s scarring effect. In both regions, house prices would be around 2% and 6% higher without them respectively.

The impact of cohort differences on house prices is symmetric across regions (-6%), despite the impact on home ownership rates being larger in high-price MSAs. This is because households re-sort between regions and the identity of the marginal buyer in each region changes (relative to the steady states without cohort differences). In the benchmark, the marginal buyer is poorer in low-price MSAs, since richer households out-migrate in order to profit from relatively lower house prices in high-price MSAs, which have higher amenities. Below, I show that the model generates realistic population flows for the two sets of regions, so that the estimated effects due to spatial sorting are credible.

explain cross-sectional differences in housing cycles in the 2000s. It adds to Van Nieuwerburgh and Weill (2010), who show that growing income differences between regions can generate even larger differences in house price movements.
The symmetric impacts of cohort differences on house prices hides substantial regional heterogeneity in the responses of young buyers. Student debt and graduating in a recession decrease the young home ownership rate by 8 pp and 15 pp in high-price MSAs, but they increase it by 17 pp and 8 pp in low-price MSAs. This effect is again due to spatial sorting: worse life-cycle features lead some young buyers to relocate from high-price to low-price MSAs. Without cohort differences, Millennials would stay in high-price MSAs and wait until they have sufficient savings and income to buy. This result is consistent with growing evidence on Millennial buyers leaving high-price MSAs since the recession and buying in less expensive areas, where they contribute to local housing booms.\footnote{See Frey (2019). Examples include the Austin, Denver, and Raleigh areas.}

Within high-price areas, Millennials who do not relocate consume more rental services, which generates a long-run boom in rents. I estimate that student debt boosted rents in high-price MSAs by 8.3%.

Table 6: Long-run housing market impact of cohort differences and mobility

<table>
<thead>
<tr>
<th>Variable</th>
<th>Benchmark</th>
<th>No student debt</th>
<th>No graduating in recession</th>
<th>Free mobility</th>
<th>No mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>P_L</td>
<td>100,000</td>
<td>102,046</td>
<td>106,282</td>
<td>100,069</td>
<td>116,615</td>
</tr>
<tr>
<td>R_L ($)</td>
<td>1,010</td>
<td>1,174</td>
<td>1,112</td>
<td>1,523</td>
<td>673</td>
</tr>
<tr>
<td>h_{young}^L</td>
<td>0.57</td>
<td>0.40</td>
<td>0.49</td>
<td>0.50</td>
<td>0.52</td>
</tr>
<tr>
<td>h_{all}^L</td>
<td>0.69</td>
<td>0.69</td>
<td>0.71</td>
<td>0.68</td>
<td>0.70</td>
</tr>
<tr>
<td>P_H</td>
<td>240,000</td>
<td>245,911</td>
<td>254,565</td>
<td>220,429</td>
<td>188,042</td>
</tr>
<tr>
<td>R_H ($)</td>
<td>1,415</td>
<td>1,307</td>
<td>1,344</td>
<td>1,546</td>
<td>2,210</td>
</tr>
<tr>
<td>h_{young}^H</td>
<td>0.38</td>
<td>0.46</td>
<td>0.53</td>
<td>0.38</td>
<td>0.44</td>
</tr>
<tr>
<td>h_{all}^H</td>
<td>0.67</td>
<td>0.69</td>
<td>0.73</td>
<td>0.62</td>
<td>0.66</td>
</tr>
</tbody>
</table>

Notes: In the benchmark model, Millennial households entering the economy during the recession have student debt and persistently lower lifetime income because of graduating in bad times; the moving cost $m \in (0, \infty)$ generates positive but limited mobility between regions. Comparative statics analysis: columns after “Benchmark” show the steady state values of the variables of interest when setting separate cohort differences between Millennials and other household types to zero. “Free mobility”: $m = 0$. “No mobility”: $m = \infty$. Prices and rents are in 1999 dollars.

Figure 11 shows the effect of cohort differences on housing market volatility. It plots the responses of young home ownership and house prices to the aggregate recession in counterfactual economies without student debt and the recession’s scarring effect on Millennials. These two features amplify the decrease of young home ownership in high-price MSAs by a factor of two. Without them, young home ownership would even increase in low-price MSAs in response to the recession, at odds with the data. Thus, abstracting from Millennial-specific features would significantly bias the inference on the effects of

\footnote{See Frey (2019). Examples include the Austin, Denver, and Raleigh areas.}
the recession on housing markets. Consistent with LTV constraints binding more in low-price MSAs, the negative effect of student debt on home ownership is relatively larger in those regions (-15 pp) since it slows down wealth accumulation for a down payment. Consistent with PTI constraints binding more in high-price MSAs, the recession’s scarring effect on earnings is relatively larger (-25 pp).

Lastly, cohort differences make the house price bust more persistent in low-price MSAs, but they have a smaller effect in high-price MSAs. This result is due to the endogenous response of the house price distribution in the steady state and the transition dynamics of the economy. For fixed initial prices, worse life-cycle features make buyers’ purchase rates more elastic to shocks, which should amplify house price busts when credit contracts. In equilibrium, however, cohort differences also lead to lower initial prices in steady state, which make constraints less likely to bind in the first place, hence purchase rates less elastic to shocks. Quantitatively, these two effects almost cancel out.

Figure 11: Home ownership and house price responses to aggregate recession without cohort differences

Notes: On upper panels, responses of 25-44 year old home ownership in the benchmark (solid lines), the benchmark without Millennial student debt (dotted lines), the benchmark without the recession’s scarring effect on Millennial earnings (dashed lines). On lower panel, house price responses. Blue: low-price MSAs. Red: high-price MSAs. Changes in percentage terms relative to 2005.
6.3 Household Mobility

I conclude this section by studying how the response of housing markets to the recession depend on household mobility between regions.

Figure 12 plots population changes in the two types of metro areas since the Great Recession in the model and the data. The model generates realistic population flows in response to the recession, hence produces credible estimates of spatial equilibrium effects. It exactly matches the 2% population decline in high-price metros, and slightly overestimates the 1.5% increase in low-price metros. While relatively small, previous sections have shown that these flows have a significant effect on housing markets.

![Figure 12: Population response to aggregate recession](image)

Notes: Model changes: solid lines. Data changes (dashed lines) are calculated as deviations from their 2005 values, from which the aggregate trend (also in deviation from 2005) is subtracted to control for the increase in total population. The resulting series are thus normalized to 0 in 2005. Similar results are obtained with unweighted and population-weighted averages by MSA groups. Low-price MSAs in blue, high-price MSAs in red. Source: ACS.

The last two columns of Table 6 quantify the long-run effect of spatial sorting. The benchmark model lies between two polar cases of an economy without mobility \(m = +\infty \) and with free mobility \(m = 0 \). Without mobility, prices would be +16.6% higher in low-price MSAs and -21.6% lower in high-price MSAs. Under the same initial distributions of households as in the benchmark, richer households who would have moved from low-price to high-price MSAs are forced to stay in the former, while poorer households who would have moved from high-price to low-price MSAs are forced to stay in the latter. As a result, the marginal home buyers are respectively richer and poorer, which reduces regional differences between housing markets.

In the long run, the effect on house prices of decreasing moving costs \(m \) to zero is non-monotonic, as prices in high-price MSAs are also lower with free mobility than in the
benchmark (-8.2%). Because the cost of moving is lower, households’ probability to move between regions is higher. Therefore their value functions in low-price MSAs capitalize a larger share of high-price MSAs’ amenities. Similarly, since households in high-price MSAs have a lower probability to remain in the same region as they move in response to shocks over their life-cycles, their value functions capitalize a lower fraction of local amenities. Overall, this makes owning in high-price MSAs less desirable.

Since the steady state distribution of house prices is less heterogeneous without sorting, so are their dynamic responses to the recession, as shown in Figure 13. The counterfactual impulse responses show that mobility strongly amplifies the decrease in young home ownership in high-price MSAs, with estimates in the benchmark (-55%) lying between the model with no mobility (-30%) and free mobility (-60%). In contrast, mobility dampens the bust in low-price MSAs as some young buyers relocate to cheaper areas. As for all the experiments in this paper, the effect of mobility on older households is ambiguous and much smaller (Appendix Figure 36). Older agents are less mobile in steady state and in response shocks because the fixed utility cost of moving represents a relatively larger fraction of their remaining lifetime utility. Their home ownership rate decreases in the benchmark in response to the recession, while it increases in the two polar cases due to the non-monotonic effect of \(m\). Therefore the net impact of the recession on house prices is largest in the benchmark model, with significant but limited spatial sorting.\(^{42}\)

7 Regional Heterogeneity and Housing Stimulus Policies

This section concludes by analyzing the effect of regional credit constraints on the effectiveness of housing stabilization policies implemented in response to an aggregate recession. I focus on subsidies to first-time buyers, of which the First Time Homebuyer Credit (FTHC) of 2009 is a large-scale example, whose impact has not yet been evaluated in a structural model. I compute estimates of the impact of the policy, which account for spatial equilibrium and general equilibrium effects, and use them to understand its net effect on welfare.\(^{43}\) I then show how place-based subsidies can improve its effectiveness.

\(^{42}\)Thus abstracting from spatial sorting would also lead to biased inference about the drivers of young home ownership and house prices since the recession. Unless local distributions of age, income, and wealth, are exogenously chosen to match their empirical counterparts and used as inputs into the model. In that case, the model would match the initial steady state in the data in the period when these distributions are taken from. However, the model would not be robust to the Lucas critique, and therefore comparative statics and transition dynamics analyses would be biased.

\(^{43}\)Thus my results supplement empirical estimates of local average treatment effects.
Figure 13: Effect of mobility on home ownership and house price responses to aggregate recession

Notes: On upper panels, responses of 25-44 year old home ownership in the benchmark with positive but limited mobility (solid lines, $m \in (0, \infty)$), no mobility (dotted lines, $m = \infty$), free mobility (dashed lines, $m = 0$). On lower panel, house price responses. Blue: low-price MSAs. Red: high-price MSAs. Changes in percentage terms relative to 2005.

7.1 The First-Time Home Buyer Credit

Background I focus on the second version of the FTHC in the 2009 American recovery and Reinvestment Act, as in Berger et al. (2019). The policy is modeled as an $8,000 unanticipated subsidy for households with income below $112,500, which lasts for the length of the bust. The policy is financed by the issuance of long-term government bonds such that the government budget constraint does not affect the current cohorts. I compare the economy’s transition dynamics in response to the recession with (“FTHC”) and without the subsidy (“Bench”).

Dampening effect of regional heterogeneity Figure 14 shows the dynamic impact of the policy. It has a stabilizing effect on young home ownership (-5% instead of -10% in low-price MSAs and -35% instead of -45%) and on house prices. The subsidy directly
makes LTV constraints less likely to bind, and indirectly makes PTI constraints less likely to bind because buyers need to borrow less. It stabilizes young home ownership by about 5 pp in low-price regions and 10 pp in high-price regions, resulting in an increase in home sales of about 10%. It stabilizes the aggregate price index by about 1 pp, an effect coming mostly from dampening the price decline in low-price metros. These effects are in line with empirical estimates (Berger et al. (2019)).

The policy is efficient at stabilizing low-price regions, by cushioning half of the decrease in young home ownership and one seventh of the house price decrease. However, it fails to stimulate high-price regions relatively as much, by cushioning less of one fourth of the decrease in young home ownership and having virtually no impact on prices. Therefore, its effect on aggregate house prices is limited. Because it is the same across regions, the subsidy represents a lower fraction of house prices in high-price than in low-price MSAs (8% vs. 3.3%). Therefore, it relaxes local credit constraints for more buyers in the latter. Since most of the decrease in young home ownership comes from high-price regions, a uniform subsidy across regions does not stabilize the regions that are most responsible for the bust.

Figure 14: Impact of First-Time Homebuyer Credit on home ownership and house prices

Notes: Solid lines represent the benchmark responses without the policy. Dashed lines represent responses with the policy. In both cases the economy is subject to the same sequence of income and credit shocks as in the benchmark. Left panel: change in young home ownership (low-price MSAs in blue, high-price MSAs in red). Middle panel: house prices. Right panel: aggregate house price index (black).

44In the model, the increase in home sales consists of more sales from older to younger households and of more residential investment. In the data, the increase also came from a decrease in the stock of existing vacant homes.
7.2 Place-Based Housing Subsidies

Instead of an identical dollar subsidy across regions, I now estimate the impact on an identical proportional subsidy, which is chosen to be government budget-neutral. Because of regional house price differences, such a policy is effectively a place-based subsidy, which increases the dollar amount received by first-time buyers in high-price regions, and decreases the number of recipients in low-price regions.

Welfare Figure 15 plots the dynamic welfare impacts of the uniform (“FTHC”) and the place-based subsidy (“PB”). Consumption-equivalent variations measure the net welfare gains of the policies in terms of four years of non-durable consumption (one period). In both cases, the policy generates a significant welfare gain for the representative household (average, black lines), corresponding to a 1.5% increase in four year consumption. These gains come from the utility benefits of owning, and a small increase in the consumption of non-durables (Appendix Figure 37). They are larger in the second period of the recession, when the decrease in home ownership and in house prices are larger. They can be decomposed into conditional welfare gains for the different categories of households, and changes in the sizes of the groups. The policy only benefits renters who buy a house, and has a limited effect on owners’ welfare. It benefits more buyers in high-price regions, because amenities and the benefits from home ownership are larger. Thus even if the policy fails to stabilize home ownership as much as in low-price regions, the gains for households who access it are larger.

Gains from place-based subsidy Relative to the uniform FTHC, place-based subsidies increase aggregate welfare by a total amount equivalent to 1.5% of four-year consumption. This is achieved by an increase in the welfare of buyers in high-price regions and an increase in the size of this group because the policy makes buying more attractive. Though the policy is not a Pareto improvement, this increase dominates the small welfare losses of buyers in low-price regions, and allows to improve the overall effectiveness of the policy. The relative welfare increase has two sources. First, the utility benefits Ξ_H of living and owning in high-price regions are larger, which makes welfare gains larger for a given increase in local home ownership. Second, the place-based subsidy is larger in high-price regions, therefore it stabilizes young home ownership more than the uniform subsidy, applying the larger utility benefits to a larger population. This result suggests

45 Appendix B.3 details the calculations of CEVs.
that housing stabilization policies should not only account for buyers’ income and wealth, but also for house price differences and location preferences.

Figure 15: Welfare effect of First-Time Homebuyer Credit and place-based subsidy

Notes: Solid lines represent conditional welfare gains from the First-Time Homebuyer Credit. Dashed lines represent conditional gains from a place-based subsidy, defined as a fixed percentage of local prices in the steady state. In both cases the economy is subject to the same sequence of income and credit shocks as in the benchmark. Welfare effect of policies measured relative to the benchmark as consumption-equivalent variations (for four years). Left panel: welfare gains in low-price MSAs (blue). Middle panel: welfare gains in high-price MSAs. Conditional average gains are plotted separately for renters (dots) and owners (crosses). Right panel: aggregate welfare gains, computed with a utilitarian social welfare function.

8 Conclusion

Low home ownership rates from young households are one of the main features of the post-Great Recession period. This paper shows that to understand their determinants and their effects on households, housing markets, and stimulus policies, it is critical to account for regional differences between markets. I obtain these findings in a novel setting, which explicitly maps a multi-region dynamic equilibrium model with heterogeneous households and incomplete markets, to a panel of U.S. metro areas.

Because young buyers are more financially constrained in regions with higher prices, they disproportionately respond to changes in credit standards by delaying home purchases, resulting in larger busts, even when local housing supply is elastic. Thus the vastly heterogeneous dynamics of local markets after the recession is not explained by larger local shocks to income or credit, but rather by the larger impact on high-price regions of the same credit contraction nationwide. The effect of a temporary credit contraction is highly persistent as young households delay home ownership, especially in
high-price regions, but it ultimately dissipates. In contrast, cohort differences such as student debt and the recession’s scarring effect on Millennial earnings permanently hamper housing markets and reduce the importance of housing on households’ balance sheets. While ameliorating them would help stimulating housing markets in the long run, it fails to stabilize them in response to events like the Great Recession. Temporary stimulus policies such as subsidies to young buyers are more effective, but regional differences in house prices dampen their impact, weakening aggregate stimulus and welfare gains.

Therefore, place-based subsidies achieve higher welfare gains when they target high-price regions, which have larger busts. This is an important dimension in which housing stabilization policies should arguably differ from traditional place-based labor market policies, which tend to favor low-income regions. This difference comes from accounting for two key factors for housing markets: cross-sectional differences in house prices and households’ location preferences. This result is, however, less surprising in light of existing real-world housing policies. There are several first-time home buyer programs in the U.S., which differ across regions (e.g. “Achieving the Dream” in the New York State), and usually offer lower rates and down payment requirements, or direct subsidies. While those programs are permanent, my findings suggest that housing stabilization policies in downturns should mimic them and also be place-based.
References

Hurst, Erik, “Comment on “Dynamics of Housing Debt in the Recent Boom and Bust, by Adelino et al.”,” NBER Macroeconomics Annual, 2017, 32.

Appendix

A Data Appendix

A.1 Dataset Construction

To construct the regional panel dataset, I merge public-use data from the U.S. Census Bureau (American Community Survey, County Business Pattern, Building Permit Survey), Zillow, the Consumer Credit Panel of the Federal Reserve Bank of New York, the Home Mortgage Disclosure Act, Fannie Mae and Freddie Mac, and proprietary data from RealityTrac (purchased through ATTOM Data Solutions).

First, I extract the Census data through American FactFinder. I use ACS variables for which there is information for various age groups, and at the MSA level (Geographies: Metro Micro statistical areas: all MSA within US.) Variables are at the household level unless otherwise specified. When available, I use the ACS 5-year estimates. For each year, I used the following tables.

- Age group shares and total population. Topics: people: age and sex: age. Table: age and sex, ACS 5 year estimates.

- Income by age. Topics: people: age and sex: age of householder. Topics: people: income and earnings: income/earnings (households). Table: median household income in the past 12 months (in adjusted dollars for the corresponding year) by age of householder, ACS 5 year estimates. This is median income; it includes all sources of income; I construct labor earnings by MSA from the CBP data.

- Aggregate house value by age. Topics: people: age and sex: age of householder. Table: aggregate value (dollars) by age of householder, ACS 5 year estimates.

- Construction: number of establishments, number of paid employees, first quarter payroll (in thousand dollars of the corresponding year), annual payroll (in thou-

Second, I complement the construction data from the CBP with data from the Building Permits Survey, directly downloaded from the Census website. It has information, by MSA and year, on the number and dollar amount of permits issued for various building sizes (structures with 1, 2, 3-4, and 5+ units). I use data from the 2014 and 2004 universes (the 2014 universe includes approximately 20,100 permit-issuing places and is used from January 2014 forward; the 2004 universe includes approximately 19,300 permit-issuing places and is used from January 2004 to December 2014.)

Third, I obtain data on median home prices and rents from Zillow’s Home Value Index (ZHVI) and Rental Index (ZRI), which are seasonally-adjusted ideal price indices based on a machine-learning algorithm that uses the sale prices of a set of homes with a constant composition over time. I use Zillow’s crosswalk between its regions and federally defined MSAs to obtain the data at the MSA level. The frequency is monthly. I annualize the data by calculating an unweighted average across months for each MSA.

Fourth, I obtain data on mortgage credit from HMDA, and Fannie Mae and Freddie Mac through Recursion Co, a financial analytics firm which aggregates the data at the MSA-level for research purposes. It includes information on the number of applications and of loans originated, their dollar values, application statuses, and the characteristics of originated loans. Application statuses are: whether the loan was originated, the application was approved but not accepted, denied by the financial institution, withdrawn by the applicant, the file closed for incompleteness, the loan purchased by the institution, the preapproval request denied by the financial institution, or the preapproval request approved but not accepted (optional reporting).

Fifth, I use the data on housing supply elasticity by MSA made publicly available by Albert Saiz.

Sixth, I use data on the number and balances of mortgages originated to first-time buyers, broken down by 10-year age bins and aggregated at the MSA level, from the New York Fed’s CCP.

Then, I create a script to process the CSV and Excel tables for each of those variables for each year, and aggregate them across years. I thus obtain one table for each variable, which includes all years and MSAs. When the data is in long format, I reshape it to wide format to keep an (MSA, year) pair as the unique identifier for an observation. For the
building permits data, some observations are on several consecutive rows in the Excel file because they are long, in this case I merge those rows into a single row corresponding to an observation.

Because of its specificity, the building permits data has a different treatment detailed in this paragraph. It is in text format, and before 2009 it does not have MSA codes, but it has MSA names, so I merge it with the post-2009 data that has both MSA names and codes, using the following text analysis algorithm. Using text recognition for “,”, I split the MSA name between the metro area and the state names (e.g. for “New Orleans, LA”, the state is “LA”). I do the same for the metro name itself when it combines several zones using hyphens. For instance, “Albany-Schenectady-Troy” produces three variables: MSA name 1, name 2 and name 3, with respective values “Albany”, “Schenectady”, and “Troy”. All those names are inputs for the text recognition algorithm. Its goal is to fill in the missing MSA codes in the old universe data with help of the new universe data46. The steps are as follows. Step 1: look for rows with missing code in the entire table; when a missing value is found, identify the corresponding original MSA name and state, and look in the entire table if there is another row with a non-missing MSA code and the same name and state; if yes, stop, and declare a perfect match, and replace the missing value by the MSA code found; otherwise, do the same without the restriction that the states must be identical, and if a non-missing value is found, stop and declare a match based on CBSA name only; otherwise, go to step 2. Step 2: for unmatched MSA names, use a fuzzy string matching algorithm (based on the Levenshtein distance) to find matching original MSA names, either perfect or approximate. Replace missing values by the found MSA codes, and otherwise go to step 3. Step 3: re-do step 2, now using MSA name 1 (this helps with unmatched hyphenated CBSA names). If there are still unmatched values (this is not the case), then do it for name 2, etc. Finally, delete the unmatched observations (an alternative would be to exploit information based on the observations’ values, but at the cost of increased computational complexity).

Then, I merge all those tables using an (MSA code,year) pair as a unique identifier.

Finally, I deflate all nominal variables using the chained CPI for all urban consumers (all items in US city average) from the BLS, equal to 100 in 1999.

I also perform various checks on the resulting dataset to ensure its consistency. For instance, check that the number of MSAs is between 384 (number of MSAs in the U.S. as defined by the Office of Management and Budget) and 392 (including Puerto Rico).

46One limitation is if MSA delineations have substantially changed between the old and new universes.
A.2 Additional data sources

These data sources supplement those described in the main text, and are used either in the calibration of the model or for control variables in the regressions presented below.

To account for exit from homeownership through foreclosures, I use MSA-level proprietary foreclosure data from RealtyTrac./ATTOM Data Solution. A foreclosure is defined as the union of the following events: notice of default, pending lawsuit, notice of trustee’s sale, notice of foreclosure sale, Real Estate Owned property.

To account for housing supply side factors, I collect data from the Building Permits Survey and from the County Business Patterns to proxy for residential investment and construction. It comprises the number and value of all building permits and broken down by type of structures (from 1 to 5+ units), as well as the total number of employees, payroll, and number of establishments in the construction sector (NAICS code 23 and subcodes). I also use MSA-level data on housing supply elasticity as estimated by Saiz, which are do not vary by year.

Finally, to check that my findings are not affected by differences in housing types by region and age, I use detailed panel data from the American Housing Survey (AHS), which I aggregate at the MSA level (available upon request). In particular, it includes the type of housing unit (e.g. detached single-family home), the number of bedrooms, construction year, and location within or outside an MSA and/or urban and rural areas.
A.3 Classifying Regions

Figure 16: Regional distribution of house price levels

Table 7: MSA group: bottom 50% of the 2005 house price distribution

<table>
<thead>
<tr>
<th>Bottom 50%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abilene, TX ; Akron, OH ; Albany, GA ; Alexandria, LA ; Altoona, PA ; Amarillo, TX ; Ames, IA ; Appleton, WI ; Athens-Clarke County, GA ; Augusta-Richmond County, GA-SC ; Bangor, ME ; Baton Rouge, LA ; Battle Creek, MI ; Bay City, MI ; Beaumont-Port Arthur, TX ; Beckley, WV ; Binghamton, NY ; Birmingham-Hoover, AL ; Bismarck, ND ; Bloomington, IL ; Bloomington, IN ; Bloomington-Berwick, PA ; Bowling Green, KY ; Brownsville-Harlingen, TX ; Buffalo-Cheektowaga-Niagara Falls, NY ; Buffalo-Niagara Falls, NY ; Burlington, NC ; Canton-Massillon, OH ; Cape Girardeau, MO-IL ; Cape Girardeau-Jackson, MO-IL ; Cedar Rapids, IA ; Champaign-Urbana, IL ; Charleston, WV ; Chatanooga, TN-GA ; Cincinnati, OH-KY-IN ; Cincinnati-Middletown, OH-KY-IN ; Clarksville, TN-KY ; Cleveland, TN ; Cleveland-Elyria, OH ; Cleveland-Elyria-Mentor, OH ; College Station-Bryan, TX ; Columbia, MO ; Columbia, SC ; Columbus, GA-AL ; Columbus, IN ; Corpus Christi, TX ; Cumberland, MD-WV ; Dalton, GA ; Danville, IL ; Davenport-Moline-Rock Island, IA-IL ; Dayton, OH ; Decatur, IL ; Des Moines, IA ; Des Moines-West Des Moines, IA ; Dothan, AL ; Dubuque, IA ; Duluth, MN-WI ; Eau Claire, WI ; El Paso, TX ; Elizabethtown, KY ; Elizabethtown-Fort Knox, KY ; Elkhart-Goshen, IN ; Elmiro, NY ; Enid, OK ; Erie, PA ; Evansville, IN-KY ; Fargo, ND-MN ; Fayetteville, NC ; Flint, MI ; Florence, SC ; Florence-Muscle Shoals, AL ; Fond du Lac, WI ; Fort Smith, AR-OK ; Fort Wayne, IN ; Gadsden, AL ; Goldsboro, NC ; Grand Forks, ND-MN ; Grand Island, NE ; Grand Rapids-Wyoming, MI ; Green Bay, WI ; Greensboro-High Point, NC ; Greenville, SC ; Greenville-Anderson-Mauldin, SC ; Greenville-Mauldin-Easley, SC ; Gulfport-Biloxi, MS ; Gulfport-Biloxi-Pascagoula, MS ; Hammond, LA ; Hattiesburg, MS ; Hickory-Lenoir-Morganton, NC ; Hot Springs, AR ; Houma-Bayou Cane-Thibodaux, LA ; Houston-Sugar Land-Baytown, TX ; Houston-The Woodlands-Sugar Land, TX ; Huntington-Ashland, WV-KY-OH ; Idaho Falls, ID ; Indianapolis, IN ; Indianapolis-Carmel, IN ; Indianapolis-Carmel-Anderson, IN ; Jackson, MI ; Jackson, MS ; Jackson, TN ; Jacksonville, NC ; Jefferson City, MO ; Johnson City, TN ; Johnstown, PA ; Jonesboro, AR ; Kalamazoo-Portage, MI ; Kankakee, IL ; Kankakee-Bradley, IL ; Killeen-Temple, TX ; Killeen-Temple-Fort Hood, TX ; Kingsport-Bristol-Bristol, TN-VA ; Knoxville, TN ; Kokomo, IN ; La Crosse, WI-MN ; La Crosse-Onalaska, WI-MN ; Lafayette, LA ; Lafayette-West Lafayette, IN ; Lake Charles, LA ; Lansing-East Lansing, MI ; Lake Charles, LA ; Lansing-East Lansing, MI ; Laredo, TX ; Lawton, OK ; Lexington-Fayette, KY ; Lima, OH ; Lincoln, NE ; Little Rock-North Little Rock, AR ; Little Rock-North Little Rock-Conway, AR ; Longview, TX ; Louisville, KY-IN ; Louisville-Jefferson County, KY-IN ; Louisville-Jefferson County, KY-IN ; Lubbock, TX ; Lynchburg, VA ; Macon, GA ; Macon-Bibb County, GA ; Manhattan, KS ; Mansfield, OH ; McAllen-Edinburg-Mission, TX ; Memphis, TN-MS-AR ; Michigan City-La Porte, IN ; Midland, MI ; Midland, TX ; Mobile, AL ; Monroe, LA ; Montgomery, AL ; Morgantown, WV ; Morristown, TN ; Muncie, IN ; Muskegon, MI ; Muskegon-Norton Shores, MI ; New Bern, NC ; New Orleans-Metairie, LA ; New Orleans-Metairie-Kenner, LA ; Niles-Benton Harbor, MI ; Odessa, TX ; Oklahoma City, OK ; Omaha-Council Bluffs, NE-IA ; Oshkosh-Neenah, WI ; Owensboro, KY ; Parkerburg-Marietta-Vienna, WV-Ohio ; Parkersburg-Vienna, WV ; Peoria, IL ; Pittsburgh, PA ; Pocatello, ID ; Pueblo, CO ; Rochester, NY ; Rockford, IL ; Rome, GA ; Saginaw, MI ; Saginaw-Saginaw Township North, MI ; San Angelo, TX ; San Antonio, TX ; San Antonio-New Braunfels, TX ; Sandusky, OH ; Scanton-Wilkes-Barre, PA ; Scanton-Wilkes-Barre-Hazleton, PA ; Shreveport-Bossier City, LA ; Sioux City, IA-NE-SD ; Sioux Falls, SD ; South Bend-Mishawaka, IN-MI ; Spartanburg, SC ; Springfield, IL ; Springfield, MO ; Springfield, OH ; St. Joseph, MO-KS ; Sumter, SC ; Syracuse, NY ; Terre Haute, IN ; Texarkana, TX-AR ; Texarkana, TX-Texarkana, AR ; Toledo, OH ; Topeka, KS ; Tulsa, OK ; Tuscaloosa, AL ; Tyler, TX ; Utica-Rome, NY ; Valdosta, GA ; Victoria, TX ; Waco, TX ; Warner Robins, GA ; Waterlo-Cedar Falls, IA ; Watertown-Fort Drum, NY ; Wausau, WI ; Wheeling, WV-Ohio ; Wichita Falls, TX ; Wichita, KS ; Williamsport, PA ; Winston-Salem, NC ; Yakima, WA ; Youngstown-Warren-Boardman, OH-PA ;</td>
</tr>
<tr>
<td>Top 50%</td>
</tr>
<tr>
<td>----------</td>
</tr>
</tbody>
</table>
Figure 17: House price dynamics by region group

Notes: Levels, 1999 dollars (left panel) and deviation from 2005 value, normalized to 100 (right panel). MSAs are sorted into two groups by the level of house prices in 2005 (bottom 50%, blue, and top 50%, red). Within each group, the weighted average rate of a given age group is calculated using the MSA total population in 2005. The shaded area indicates the NBER recessions. Sources: Zillow, ACS.

Figure 18: Rent dynamics by region group

Notes: Levels, 1999 dollars (left panel) and deviation from 2005 value, normalized to 1 (right panel). MSAs are sorted into two groups by the level of house prices in 2005 (bottom 50%, blue, and top 50%, red). Within each group, the weighted average rate of a given age group is calculated using the MSA total population in 2005. The shaded area indicates the NBER recessions. Sources: Zillow, ACS.

Robustness I verified that this sorting of MSAs is robust to using alternative house price indices. In particular, Zillow’s ZHVI aligns with alternative house price measures like the
All-Transaction House Price Index from the U.S. Federal Housing Finance Agency (FHFA) and the S&P/Case-Shiller Home Price Index.

A.4 Demographic Determinants of Home Ownership Changes

Table 9: Population groups with largest decrease in home ownership since 2005, by determinant of home ownership

<table>
<thead>
<tr>
<th>Home ownership rate</th>
<th>2005-15 change (pp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>-6.1</td>
</tr>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>25-34</td>
<td>-14.7</td>
</tr>
<tr>
<td>15-24</td>
<td>-13.1</td>
</tr>
<tr>
<td>Income</td>
<td></td>
</tr>
<tr>
<td>Q3</td>
<td>-7.4</td>
</tr>
<tr>
<td>Q1</td>
<td>-6.4</td>
</tr>
<tr>
<td>Race</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>-6.3</td>
</tr>
<tr>
<td>White</td>
<td>-5.0</td>
</tr>
<tr>
<td>Education</td>
<td></td>
</tr>
<tr>
<td>Less than high school</td>
<td>-8.5</td>
</tr>
<tr>
<td>Some post-secondary</td>
<td>-8.4</td>
</tr>
<tr>
<td>Household composition</td>
<td></td>
</tr>
<tr>
<td>Female single householder, with kids</td>
<td>-9.7</td>
</tr>
<tr>
<td>Married couple with kids</td>
<td>-8.3</td>
</tr>
</tbody>
</table>

Source: AHS. This table shows the result of a single unconditional sort of changes in home ownership rates (in percentage points) by population groups corresponding to classical determinants of home ownership (Goodman and Mayer (2018)). For each group, the largest two changes by subgroup are shown. Young households highlighted, as group for which home ownership fell the most.
A.5 Additional Figures: Changes

Figure 19: Change in old home ownership

Notes: The solid lines depict the average home ownership rate of 45-85 years old buyers in low- (blue) and high-price MSAs (red). The black line depicts the economy average. Variables normalized to 100 in 2005. Population-weighted averages. Gray bands indicate NBER recessions. Source: ACS, Zillow.

Figure 20: Changes in mortgage application and acceptance rates

Notes: Left panel, changes in purchase mortgage application rates in low- (blue) and high-price MSAs (red), calculated as the ratio of the number of mortgage applications to buying-age population. Right panel, changes in purchase mortgage acceptance rates, calculated as the ratio of the number of mortgage applications accepted to the number of applications. Black line depicts the economy average. Variables normalized to 100 in 2005. Population-weighted averages. Gray bands indicate NBER recessions. Source: ACS, HMDA, Zillow.
Figure 21: Change in foreclosure rates

Notes: Changes in foreclosure rates in low- (blue) and high-price MSAs (red). Black line depicts the economy average. Variables normalized to 100 in 2005. Population-weighted averages. Gray bands indicate NBER recessions. Source: RealtyTrac, Zillow, ACS.

Figure 22: Labor market changes

Notes: Changes in number of employees (upper left panel), number of establishments (upper right), total annual payroll (lower left), median worker income (lower right) in low- (blue) and high-price MSAs (red). Black lines depict the economy average. Population-weighted averages. Gray bands indicate NBER recessions. Source: CBP, ACS, Zillow.
A.6 Additional Figures: Levels

Figure 23: Home ownership rates by age

Notes: Left panel, home ownership rate for young households (25-44 y.o.) in low- (blue) and high-price MSAs (red). Right panel, home ownership rate for older households (45-85 y.o.). The black line depicts the economy average. Population-weighted averages. Gray bands indicate NBER recessions. Source: ACS, Zillow.

Figure 24: Credit conditions

Notes: Top percentiles (P75) of the distributions of credit scores (right panel), Payment to income ratios (middle, in %), loan to value ratios (right, in %) in low- (blue) and high-price MSAs (red). Black lines depict the economy average. Population-weighted averages. Gray bands indicate NBER recessions. Source: ACS, Zillow.
Figure 25: Loan application rate, rejection rate, foreclosure rate

Notes: Left panel, purchase mortgage application rates in low- (blue) and high-price MSAs (red), calculated as the ratio of the number of mortgage applications to buying-age population. Middle panel, purchase mortgage acceptance rates, calculated as the ratio of the number of mortgage applications accepted to the number of applications. Right panel, foreclosure rates. Black line depicts the economy average. Population-weighted averages. Gray bands indicate NBER recessions. Source: Fannie Mae, Freddie Mac, RealtyTrac, ACS, Zillow.
A.7 Millennial Attitudes Towards Home Ownership

Using three different measures, I find that there is no role for changes in Millennials’ preferences towards home ownership relative to previous cohorts to explain their lower home ownership rates. Unlike attitudes towards financial markets after the Great Depression described by Malmendier and Nagel (2011), the Great Recession does not seem to have changed young households’ attitudes towards home ownership.

First, this finding comes from direct evidence from three surveys directly asking Millennial households about their preferences in the 2010s. In the Survey of Consumer Expectations’ Housing Survey (Federal Reserve Bank of New York), the question “Would you like to own instead of rent your primary residence” gives 71.3% yes (19.4% no); “Compared to other financial investments, buying in your zip code today is” gives 64.9% good (9.1% bad). Responses are similar in the Housing Confidence Survey (Pulsenomics), which asks “Is housing a good long-term investment?”, and in the National Housing Survey (Fannie Mae).

Second, this finding is confirmed by indirect measures in household-level data. If Millennial’s preferences towards owning have decreased, then financially-unconstrained households should have lower home ownership rates than previous cohorts. I find that this is not the case. I focus on prime-age white households in the ACS, aged 25-34 years old, married with children, and with annual income greater than $100,000. I find that their home ownership rate has decreased significantly less (-2.8 pp) than for all households in 1990-2015.

Third, in line with these findings, the quantitative analysis conducted in the model finds no residual role for changes in preferences to explain the decrease in home ownership, once the effect of credit conditions and objective cohort differences has been accounted for.
B Model Details

B.1 Households

Pension schedule The pension schedule replicates key features of the U.S. pension system by relating last period income to average income over the life-cycle to compute retirement benefits (Guvenen and Smith (2014)). Denote economywide average lifetime labor income as \bar{Y}, and household i’s relative lifetime income as $\bar{Y}_{i,R} = \bar{\hat{Y}}_{i,R}/\bar{Y}$, where $\bar{\hat{Y}}_{i,R}$ is the predicted individual lifetime income implied by a linear regression of i’s lifetime income on its income at retirement age.\(^{47}\) Retirement income is equal to:

$$Y_{i,R} = \bar{Y} \times \begin{cases} 0.9\bar{\hat{Y}}_{i,R} & \text{if } \bar{\hat{Y}}_{i,R} \leq 0.3 \\ 0.27 + 0.32(\bar{\hat{Y}}_{i,R} - 0.3)\bar{\hat{Y}}_{i,R} & \text{if } 0.3 < \bar{\hat{Y}}_{i,R} \leq 2 \\ 0.81 + 0.15(\bar{\hat{Y}}_{i,R} - 2)\bar{\hat{Y}}_{i,R} & \text{if } 2 < \bar{\hat{Y}}_{i,R} \leq 4.1 \\ 1.13 & \text{if } 4.1 \leq \bar{\hat{Y}}_{i,R} \end{cases}$$ \(35\)

B.2 Discussion

Housing supply Fixed $\{h_{0}^{o}\}_{j,t}$ across regions imply that the supply of rentals is held by absentee landlords with perfectly inelastic portfolios. The fraction of owner-occupied square feet is exogenous, but the homeownership rate among households is fully endogenous. House price variations induce changes in the housing stock $H_{j,t}$ through residential investment $I_{j,t}$, hence in the number of owner-occupied square feet $H_{j,t}^{ho}$. Because the size of owner-occupied units \bar{h} is fixed, variations in $H_{j,t}^{ho}$ induce variations in the homeownership rate. In equilibrium, house prices adjust to induce just enough households to hold the stock of owner-occupied houses. This assumption makes the model tractable, and despite this simplification the quantitative analysis closely replicates changes in homeownership in the data.\(^{48}\) One limitation of this assumption is that it does not allow to capture changes in landlords’ welfare when prices fall.

It also implies that negative shocks to households’ demand for owner-occupied units result in a decrease in prices, rather than an increase in conversions to rentals, which

\(^{47}\)Using income retirement to define pension benefits allows to save a state variable in the dynamic programming problem.

\(^{48}\)Intuitively, the decrease in homeownership rates is due to a decrease in residential investment because prices fall. Combined with the depreciation of the total housing stock, this implies that less square feet are available for owner-occupied houses. Under the fixed housing size \bar{h}, this implies that the fraction of owners must decrease in equilibrium.
would happen if landlords’ demand for houses exactly compensated the decrease in households’ demand (Greenwald and Guren (2019)). To guarantee that the effect of aggregate shocks on prices is not overestimated, the model includes two ingredients that tend to reduce it: a rental-home ownership margin and credit constraints only applying at origination (Kaplan et al. (2020)).

Finally, this assumption can be relaxed if h_{soft}^{soft} is a function of the price and homogeneous of degree $k \geq 0$. Then the solution method still applies, and the fraction of square feet of the housing stock devoted to owner-occupied houses could exogenously vary over the cycle. It would generate more conversions to rentals when prices are low relative to rents, reflecting landlords’ incentives to buy more of the housing stock to rent it out.

B.3 Welfare Analysis

Let $V(s, S_b)$ be the value function of a household with individual state $s = (e, b, t, l, a)$ (endowment, net asset position, tenure status, location, age) and when the aggregate state is S_b, the benchmark economy without policy. Let $V(s, S_p)$ be the value function of the same household type when the aggregate state is S_p, the benchmark economy with policy.

Now define the one-period consumption equivalent variation (CEV) $\omega(s)$ for this household as the one-time increase in current consumption in the benchmark economy S_b that makes the household indifferent between living in S_b and living in S_p, the economy with policy. $\omega(s)$ is implicitly defined by the following equality:

$$V(s, S_p) = \frac{u((1+\omega(s))c(s, S_b)(1+\omega(s)))h(s, S_b))^{1-\gamma}}{1-\gamma} + \mathbb{E}(s) + \beta \mathbb{E} \left[V(s', S_p) | s \right]$$

Solving for $\omega(s)$ using the definition of $V(s, S_b)$ gives:

$$\omega(s) = \left(\frac{V(s, S_p) - V(s, S_b) + u_b}{u_b} \right)^{1-\gamma} - 1$$

where $u_b = \frac{u(c(s, S_b), h(s, S_b))^{1-\gamma}}{1-\gamma}$.

To compute it in steady state and over transitions, I keep track of value functions $V(., S_b), V(., S_p)$ and policy functions $c(., S_b), h(., S_b)$ (for owners, we simply have $h(., S_b) = \bar{h}$), and use the definition of u.

I use this measure of welfare changes rather than permanent CEV because the latter do not have comparable interpretations for young and old households in OLG model, given

49It is defined as increasing the consumption of both non-durable goods and housing services here.
that young households expect to live for more periods (e.g. Hur (2018)). Alternatively, computing permanent CEV would require to use a numerical nonlinear solver for ω, since the homogeneity of the CRRA function cannot be used with additive amenity benefits χ to compute ω as a transformation of the ratio of value functions in S_b and S_p, as is usually done. This is computationally feasible for steady state CEV, but untractable for the transitions.\footnote{An alternative would be to used multiplicative amenity benefits, increasing the value of consumption depending on tenure and location status. In that case permanent CEV can be solved for as usual, as a transformation of the ratio of value functions in S_b and S_p. However the calibration is more difficult because amenity benefits are now raised to the power $1 - \gamma$, and must take very high values in the H region to simultaneously generate a high price to rent ratio and population share.}

Then, average CEVs for a given household type can be computed using the marginal distributions of $\lambda(s)$.

B.4 Numerical Solution

Steady state Fix the parameters \bar{h}, δ and $\rho_j, ho_j^{sq ft}$, which are directly measured in the regional panel of Section 2. In steady state, the model is solved in three steps.

First, fix P^{*}_L, P^{*}_H, to exactly match the regional distribution of house prices in the data.

Second, vary rents R^{*}_L, R^{*}_H to target home ownership rates in the data, $ho^{hh}_L (P^*, R^*)$ and $ho^{hh}_H (P^*, R^*)$. Home ownership rates in the model are obtained by solving the household’s problem with a global nonlinear solution method, computing the stationary distribution of households, and aggregating it across regions and tenure groups. For given local prices, home ownership rate are increasing in local rents. If migration rates are low, R_L and R_H can be separately chosen in regions L and H, otherwise they must be jointly solved for. Choose the amenity benefits ξ^{fr}_j to match average rent levels, and benefits from owning ξ^{o}_j to match home ownership rates.

Third, R^{*}_L, R^{*}_H generate regional demands for rentals, $\int_{\Omega/(P^*, R^*)} h_j (P^*, R^*) d\lambda$. Given those, the market-clearing conditions can be inverted to solve for I_j in closed form:

$$I_j = \frac{\delta \bar{h} ho^{hh}_j pop_j}{ho^{sq ft}_j P^*_j}. \quad (38)$$

Given the new I_j, go back to the first step and iterate until convergence.
Transition dynamics Households’ value functions are subject to i.i.d. idiosyncratic taste shocks following a type I Extreme Value distribution, which cancel out in the aggregate. This is a classical assumption in the dynamic demand literature. Given value functions, it allows to compute closed forms for transition probabilities between discrete choices and for the expectations of continuation value functions, which are smooth functions of prices. This feature is key to solve for the dynamics of the regional distribution of prices and rents in response to unanticipated shocks, without generating jumps in marker-clearing conditions.

The value of each option of the discrete choice problem is subject to an idiosyncratic logit error taste shock. For instance, the value of renting in region L is equal to the value of being a region L renter is:

\[
\hat{V}_{rL}(a, b_t, y_t) = V_{rL}(a, b_t, y_t) + \tilde{\varepsilon}_{rL}(a, b_t, y_t)
\]

(39)

where \(\tilde{\varepsilon}\) follows a type I extreme value (Gumbel) distribution with location parameter 0 and scale 1.

(i) It smooths out the computation of the expectation of the continuation value function, which is the envelope value of the options available next period, given the household’s current state (not the same options are available for owners and renters in the various regions). It smooths out policy and value functions, and makes them more monotonic with respect to prices when solving for them numerically. This allows to reduce the size of the state space and make the problem tractable. Without it, an extremely high number of grid points would be needed to avoid jumps in value functions over the transition. The expectation of the envelope value has a closed form, for instance for region L renters:

\[
E_{L,t}[V^r] = E_{L,t} \left[\int \hat{V}^r dF(\tilde{\varepsilon}) \right] = E_{L,t} \left[\log \left(\sum_{j=1}^{4} e^{\hat{V}^{r,j}} \right) \right]
\]

(40)

where \(\hat{V}^r = \max \{\hat{V}^{r,j}\}_{j=1,..,4}\). The outside expectation \(E_{L,t} [\cdot]\) is taken over the distribution of idiosyncratic income shocks (identical across regions in the benchmark model). \(V^r\) now denotes the “ex-ante value function”, after integrating over the vector of idiosyncratic errors (there is one realization for each individual state and option).

(ii) One obtains closed-form expressions for the probabilities of choosing the various options. Those are useful when computing the transition matrix for the law of motion of the cross-sectional distribution over location × tenure × income × cash-in-hand, which I approximate with a histogram. The probabilities have the multinomial logit closed-form,
for instance:

\[\text{Pr} \left(\tilde{V}_{r,i} = \tilde{V}_r \right) = \frac{e^{\tilde{V}_{r,i}}}{\sum_{j=1}^{4} e^{\tilde{V}_{r,j}}} \]

(41)

(iii) One can compute the dollar cost of policies in closed-form.

Computations The steady state takes 10 seconds to compute. The transition dynamics takes 15 minutes to compute, when parallelized on the NYU high-performance cluster using 20 cores with 28GB of memory each.

C Long-Run: Additional Steady State Results

C.1 Aggregate Housing Market

Table 10: Additional aggregate moments

<table>
<thead>
<tr>
<th>Variable</th>
<th>Data</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fraction homeowners with mortgage</td>
<td>0.66</td>
<td>0.57</td>
</tr>
<tr>
<td>Avg. size occupied/rented unit</td>
<td>1.50</td>
<td>1.78</td>
</tr>
</tbody>
</table>

Notes: Moments not targeted by the calibration. Source: Kaplan et al. (2020).
C.2 Life-Cycle

Figure 26: Life-cycle profiles of labor income, wealth, home ownership, and population shares

Notes: Household life-cycle profiles from 21 to 95 years old. Upper panel: gross annual labor income (including pensions) in thousands of 1999 dollars. Upper middle panel: wealth (including housing) in thousands of 1999 dollars. Lower middle panel: home ownership rate. Lower panel: regional population shares.
Figure 27: Life-cycle profiles of migrations by income and region group

Notes: Household life-cycle profiles of steady state migration rates from 21 to 95 years old. Left panel: for the average (solid line), bottom 25% (dotted), middle 50% (dotted-dashed) and top 25% (dashed) of the productivity distribution. Right panel: average (black), from low- to high-price MSAs (blue), from high- to low-price MSAs (red).

Figure 28: Life-cycle profiles of default by income and region group

Notes: Household life-cycle profiles of default rates from 21 to 95 years old. Left panel: for the average (solid line), bottom 25% (dotted), middle 50% (dotted-dashed) and top 25% (dashed) of the productivity distribution economywide. Right panel: average, in low-price MSAs (blue), in high-price MSAs (red).
Figure 29: Life-cycle profiles of LTV and PTI ratios and renters' purchase rates

Notes: Left panel: life-cycles of LTV ratio by region (left axis, solid lines), and average probability by age that first-time buyers buy in either region (right axis, pink bars). Right panel: life-cycles of PTI ratio by region (left axis, solid lines), and average probability by age that first-time buyers buy in either region (right axis, pink bars). Blue: low-price MSAs. Red: high-price MSAs. Black: LTV and PTI constraints during the recession. Credit constraints are binding when blue or red lines are below the black lines. Model values obtained using the stationary distribution of households in 2005.
D Short-Run: Additional Transition Dynamics Results

Figure 30: Rent dynamics

Notes: Average rents in the data (dashed lines) are measured as population-weighted averages of the Zillow Rental Indexes, and are linearly detrended to make them stationary. Low-price MSAs in blue, high-price MSAs in red.

Figure 31: Propensity to buy response to aggregate recession

Notes: Renters’ propensities to buy are measured as purchase rates, i.e. conditional probabilities to buy, for each region and age group. Purchase rate change for an average household (left panel), 25-44 year old households (middle), 45-85 year old households (right). Low-price MSAs in blue, high-price MSAs in red, economy average in black. Changes in percentage terms relative to 2005.
Figure 32: Shock contributions to home ownership and house price responses

Notes: Low-price MSAs in blue, high-price MSAs in red.
Figure 33: Old home ownership response by region group under alternative house price distributions

Notes: Low-price MSAs in blue, high-price MSAs in red.
Figure 34: Contributions of regional differences to home ownership and house price responses

Notes: Low-price MSAs in blue, high-price MSAs in red.
Figure 35: Contributions of cohort differences to old home ownership response

Notes: Low-price MSAs in blue, high-price MSAs in red.

Figure 36: Effect of mobility on old home ownership response

Notes: Low-price MSAs in blue, high-price MSAs in red.
E Additional Policy Results

Figure 37: Effect of the First-Time Homebuyer Credit on consumption

Notes: Low-price MSAs in blue, high-price MSAs in red. The solid lines represent benchmark responses without the policy. The dashed lines represent responses with the policy. In both cases the economy is subject to the same sequence of negative income and credit shocks as in the benchmark.
Extended Model Results

In addition to aggregate credit shocks and local income shocks, households’ valuations of owner-occupied units \(\Xi_{jt}^o \) now also fall. They are chosen to match the residual decrease in house prices after accounting for income and credit shocks. They generate realistic increases in default rates in the aggregate and across regions. This shock is similar to the valuation shocks in Guren and McQuade (2020). The “double trigger” motive for default is the only reason why households default in the model (e.g. Campbell and Cocco (2015)). It allows underwater borrowers in need of liquidity to smooth consumption, typically after a negative income shock.

The resulting model matches the dynamics of house prices, nondurable consumption, and leverage. The increase in default rates is short-lived as in the data. During the transition, default rates initially increase as a result of lower prices and income shocks. This is the direct result of the shocks, and the indirect result of amplification: defaults increase the supply of homes on the market, which further triggers price decreases, which induce more defaults, and so forth. However, the default rates rapidly fall as a result of the tightening of credit standards, which lowers leverage, hence the probability that new buyers default on their mortgages.

Figure 38: House prices responses in the model with valuation shocks

Notes: Low-price MSAs in blue, high-price MSAs in red. Data source: Zillow.
Figure 39: Leverage and consumption response in the model with valuation shocks

Notes: Leverage is computed as total mortgage debt outstanding to total housing value. Real Personal Consumption Expenditures for Nondurable Goods (U.S. Bureau of Economic Analysis). Changes in percentage terms relative 2005.

Figure 40: Default rates by age and region group in the model with valuation shocks

Notes: Default rate percentage changes from 2005. Left panel: for 25-44 (solid) and 45-85 year old households (dashed). Right panel: low-price MSAs in blue, high-price MSAs in red, aggregate in black.